

 Navigation

 	
 index

 	
 next |

 	django-modeltranslation 0.4.1 documentation

Modeltranslation

The modeltranslation application can be used to translate dynamic content of
existing Django models to an arbitrary number of languages without having to
change the original model classes. It uses a registration approach (comparable
to Django’s admin app) to be able to add translations to existing or new
projects and is fully integrated into the Django admin backend.

The advantage of a registration approach is the ability to add translations to
models on a per-app basis. You can use the same app in different projects,
may they use translations or not, and you never have to touch the original
model class.

[image: https://travis-ci.org/deschler/django-modeltranslation.png?branch=master]
 [https://travis-ci.org/deschler/django-modeltranslation]
Features

	Unlimited number of target languages

	Add translations without changing existing models

	Django admin support

	Supports inherited models

Project Home

https://github.com/deschler/django-modeltranslation

Documentation

https://readthedocs.org/projects/django-modeltranslation

Mailing List

http://groups.google.com/group/django-modeltranslation

Table of Contents

	Installation
	Requirements

	Using Pip

	Using the Source

	Setup
	Configure the Project’s settings.py

	Registering Models for Translation
	Changes Automatically Applied to the Model Class

	Accessing Translated and Translation Fields
	Rules for Translated Field Access

	Examples for Translated Field Access

	Django Admin Integration
	Tweaks Applied to the Admin

	TranslationAdmin in Combination with Other Admin Classes

	Admin Inlines

	Using Tabbed Translation Fields

	Using a Custom jQuery Library

	Management Commands
	The update_translation_fields Command

	The sync_translation_fields Command

	Caveats
	Accessing Translated Fields Outside Views

	Related Projects

Authors

	Peter Eschler <peschler@gmail.com>

	Dirk Eschler <eschler@gmail.com>

Contributors

	Carl J. Meyer

	Jaap Roes

	Bojan Mihelac

	Sébastien Fievet

	Jacek Tomaszewski

	Bruno Tavares

	And many more ...

 Copyright 2009-2012, Peter Eschler, Dirk Eschler.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-modeltranslation 0.4.1 documentation

Installation

Requirements

	Modeltranslation
	Python
	Django

	>=0.4
	2.5 - 2-7
	1.3 - 1.4

	<=0.3
	2.4 - 2.7
	1.0 - 1.4

Using Pip

$ pip install django-modeltranslation

Using the Source

Get a source tarball from github [https://github.com/deschler/django-modeltranslation/downloads] or pypi [http://pypi.python.org/pypi/django-modeltranslation/], unpack, then install with:

$ python setup.py install

Note

As an alternative, if you don’t want to mess with any packaging tool,
unpack the tarball and copy/move the modeltranslation directory
to a path listed in your PYTHONPATH environment variable.

Setup

To setup the application please follow these steps. Each step is described
in detail in the following sections:

	Add the modeltranslation app to the INSTALLED_APPS variable of your
project’s settings.py.

	Configure your LANGUAGES in settings.py.

	Create a translation.py in your app directory and register
TranslationOptions for every model you want to translate.

	Sync the database using manage.py syncdb (note that this only applies
if the models registered in the translations.py did not have been
synced to the database before. If they did - read further down what to do
in that case.

Configure the Project’s settings.py

Required Settings

The following variables have to be added to or edited in the project’s
settings.py:

INSTALLED_APPS

Make sure that the modeltranslation app is listed in your
INSTALLED_APPS variable:

INSTALLED_APPS = (
 ...
 'modeltranslation',

)

Note

Also make sure that the app can be found on a path contained in your
PYTHONPATH environment variable.

LANGUAGES

The LANGUAGES variable must contain all languages used for translation. The
first language is treated as the default language.

The modeltranslation application uses the list of languages to add localized
fields to the models registered for translation. To use the languages de
and en in your project, set the LANGUAGES variable like this (where
de is the default language):

gettext = lambda s: s
LANGUAGES = (
 ('de', gettext('German')),
 ('en', gettext('English')),
)

Note

The gettext lambda function is not a feature of modeltranslation, but
rather required for Django to be able to (statically) translate the verbose
names of the languages using the standard i18n solution.

Advanced Settings

Modeltranslation also has some advanced settings to customize its behaviour:

MODELTRANSLATION_DEFAULT_LANGUAGE

New in version 0.3.

Default: None

To override the default language as described in LANGUAGES,
you can define a language in MODELTRANSLATION_DEFAULT_LANGUAGE. Note that
the value has to be in settings.LANGUAGES, otherwise an
ImproperlyConfigured exception will be raised.

Example:

MODELTRANSLATION_DEFAULT_LANGUAGE = 'en'

MODELTRANSLATION_TRANSLATION_FILES

New in version 0.4.

Default: () (empty tuple)

Modeltranslation uses an autoregister feature similiar to the one in Django’s
admin. The autoregistration process will look for a translation.py
file in the root directory of each application that is in INSTALLED_APPS.

A setting MODELTRANSLATION_TRANSLATION_FILES is provided to limit or extend
the modules that are taken into account.

Syntax:

MODELTRANSLATION_TRANSLATION_FILES = (
 '<APP1_MODULE>.translation',
 '<APP2_MODULE>.translation',
)

Example:

MODELTRANSLATION_TRANSLATION_FILES = (
 'news.translation',
 'projects.translation',
)

Note

Modeltranslation up to version 0.3 used a single project wide
registration file which was defined through
MODELTRANSLATION_TRANSLATION_REGISTRY = '<PROJECT_MODULE>.translation'.
For backwards compatibiliy the module defined through this setting is
automatically added to MODELTRANSLATION_TRANSLATION_FILES. A
DeprecationWarning is issued in this case.

MODELTRANSLATION_CUSTOM_FIELDS

Default: () (empty tuple)

New in version 0.3.

Modeltranslation officially supports CharField and TextField.

New in version 0.4.

Support for FileField and ImageField.

In most cases subclasses of the supported fields will work fine, too. Other
fields aren’t supported and will throw an ImproperlyConfigured exception.

The list of supported fields can be extended by defining a tuple of field
names in your settings.py.

Example:

MODELTRANSLATION_CUSTOM_FIELDS = ('MyField', 'MyOtherField',)

Warning

This just prevents modeltranslation from throwing an
ImproperlyConfigured exception. Any non text-like field will most
likely fail in one way or another. The feature is considered experimental
and might be replaced by a more sophisticated mechanism in future versions.

MODELTRANSLATION_DEBUG

Default: settings.DEBUG

New in version 0.4.

Used for modeltranslation related debug output. Currently setting it to
False will just prevent Django’s development server from printing the
Registered xx models for translation message to stdout.

 Copyright 2009-2012, Peter Eschler, Dirk Eschler.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-modeltranslation 0.4.1 documentation

Registering Models for Translation

The modeltranslation app can translate CharField and TextField
based fields (as well as FileField and ImageField as of version 0.4)
of any model class. For each model to translate a translation option class
containing the fields to translate is registered with the modeltranslation app.

Registering models and their fields for translation requires the following
steps:

	Create a translation.py in your app directory.

	Create a translation option class for every model to translate.

	Register the model and the translation option class at the
modeltranslation.translator.translator

The modeltranslation application reads the translation.py file in your
app directory thereby triggering the registration of the translation
options found in the file.

A translation option is a class that declares which fields of a model to
translate. The class must derive from modeltranslation.ModelTranslation
and it must provide a fields attribute storing the list of fieldnames. The
option class must be registered with the
modeltranslation.translator.translator instance.

To illustrate this let’s have a look at a simple example using a News
model. The news in this example only contains a title and a text field.
Instead of a news, this could be any Django model class:

class News(models.Model):
 title = models.CharField(max_length=255)
 text = models.TextField()

In order to tell the modeltranslation app to translate the title and
text field, create a translation.py file in your news app directory and
add the following:

from modeltranslation.translator import translator, TranslationOptions
from news.models import News

class NewsTranslationOptions(TranslationOptions):
 fields = ('title', 'text',)

translator.register(News, NewsTranslationOptions)

Note that this does not require to change the News model in any way, it’s
only imported. The NewsTranslationOptions derives from
TranslationOptions and provides the fields attribute. Finally the model
and its translation options are registered at the translator object.

At this point you are mostly done and the model classes registered for
translation will have been added some auto-magical fields. The next section
explains how things are working under the hood.

Changes Automatically Applied to the Model Class

After registering the News model for translation an SQL dump of the
news app will look like this:

$./manage.py sqlall news
BEGIN;
CREATE TABLE `news_news` (
 `id` integer AUTO_INCREMENT NOT NULL PRIMARY KEY,
 `title` varchar(255) NOT NULL,
 `title_de` varchar(255) NULL,
 `title_en` varchar(255) NULL,
 `text` longtext NULL,
 `text_de` longtext NULL,
 `text_en` longtext NULL,
)
;
ALTER TABLE `news_news` ADD CONSTRAINT page_id_refs_id_3edd1f0d FOREIGN KEY (`page_id`) REFERENCES `page_page` (`id`);
CREATE INDEX `news_news_page_id` ON `news_news` (`page_id`);
COMMIT;

Note the title_de, title_en, text_de and text_en fields which
are not declared in the original News model class but rather have been added by
the modeltranslation app. These are called translation fields. There will be
one for every language in your project’s settings.py.

The name of these additional fields is build using the original name of the
translated field and appending one of the language identifiers found in the
settings.LANGUAGES.

As these fields are added to the registered model class as fully valid Django
model fields, they will appear in the db schema for the model although it has
not been specified on the model explicitly.

If you are starting a fresh project and have considered your translation needs
in the beginning then simply sync your database and you are ready to use
the translated models.

In case you are translating an existing project and your models have already
been synced to the database you will need to alter the tables in your database
and add these additional translation fields. Note that all added fields are
declared null=True not matter if the original field is required. In other
words - all translations are optional. To populate the default translation
fields added by the modeltranslation application you can use the
update_translation_fields command below. See
The update_translation_fields Command section for more infos on this.

 Copyright 2009-2012, Peter Eschler, Dirk Eschler.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-modeltranslation 0.4.1 documentation

Accessing Translated and Translation Fields

The modeltranslation app changes the behaviour of the translated fields. To
explain this consider the news example from the Registering Models for Translation chapter
again. The original News model looked like this:

class News(models.Model):
 title = models.CharField(max_length=255)
 text = models.TextField()

Now that it is registered with the modeltranslation app the model looks
like this - note the additional fields automatically added by the app:

class News(models.Model):
 title = models.CharField(max_length=255) # original/translated field
 title_de = models.CharField(null=True, blank=True, max_length=255) # default translation field
 title_en = models.CharField(null=True, blank=True, max_length=255) # translation field
 text = models.TextField() # original/translated field
 text_de = models.TextField(null=True, blank=True) # default translation field
 text_en = models.TextField(null=True, blank=True) # translation field

The example above assumes that the default language is de, therefore the
title_de and text_de fields are marked as the default translation
fields. If the default language is en, the title_en and text_en
fields would be the default translation fields.

Rules for Translated Field Access

So now when it comes to setting and getting the value of the original and the
translation fields the following rules apply:

Rule 1

Reading the value from the original field returns the value translated to
the current language.

Rule 2

Assigning a value to the original field also updates the value in the
associated default translation field.

Rule 3

Assigning a value to the default translation field also updates the
original field - note that the value of the original field will not be
updated until the model instance is saved.

Rule 4

If both fields - the original and the default translation field - are
updated at the same time, the default translation field wins.

Examples for Translated Field Access

Because the whole point of using the modeltranslation app is translating
dynamic content, the fields marked for translation are somehow special when it
comes to accessing them. The value returned by a translated field is depending
on the current language setting. “Language setting” is referring to the Django
set_language [https://docs.djangoproject.com/en/dev/topics/i18n/translation/#set-language-redirect-view] view and the corresponding get_lang function.

Assuming the current language is de in the News example from above, the
translated title field will return the value from the title_de field:

Assuming the current language is "de"
n = News.objects.all()[0]
t = n.title # returns german translation

Assuming the current language is "en"
t = n.title # returns english translation

This feature is implemented using Python descriptors making it happen without
the need to touch the original model classes in any way. The descriptor uses
the django.utils.i18n.get_language function to determine the current
language.

 Copyright 2009-2012, Peter Eschler, Dirk Eschler.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-modeltranslation 0.4.1 documentation

Django Admin Integration

In order to be able to edit the translations via the django.contrib.admin
application you need to register a special admin class for the translated
models. The admin class must derive from
modeltranslation.admin.TranslationAdmin which does some funky
patching on all your models registered for translation. Taken the
news example the most simple case would look like:

from django.contrib import admin
from news.models import News
from modeltranslation.admin import TranslationAdmin

class NewsAdmin(TranslationAdmin):
 pass

admin.site.register(News, NewsAdmin)

Tweaks Applied to the Admin

formfield_for_dbfield

The TranslationBaseModelAdmin class, which TranslationAdmin and all
inline related classes in modeltranslation derive from, implements a special
method which is def formfield_for_dbfield(self, db_field, **kwargs). This
method does the following:

	Copies the widget of the original field to each of it’s translation fields.

	Checks if the original field was required and if so makes
the default translation field required instead.

get_form/get_fieldsets/_declared_fieldsets

In addition the TranslationBaseModelAdmin class overrides get_form,
get_fieldsets and _declared_fieldsets to make the options fields,
exclude and fieldsets work in a transparent way. It basically does:

	Removes the original field from every admin form by adding it to
exclude under the hood.

	Replaces the - now removed - orginal fields with their corresponding
translation fields.

Taken the fieldsets option as an example, where the title field is
registered for translation but not the news field:

class NewsAdmin(TranslationAdmin):
 fieldsets = [
 (u'News', {'fields': ('title', 'news',)})
]

In this case get_fieldsets will return a patched fieldset which contains
the translation fields of title, but not the original field:

>>> a = NewsAdmin(NewsModel, site)
>>> a.get_fieldsets(request)
[(u'News', {'fields': ('title_de', 'title_en', 'news',)})]

TranslationAdmin in Combination with Other Admin Classes

If there already exists a custom admin class for a translated model and you
don’t want or can’t edit that class directly there is another solution.

Taken a (fictional) reusable blog app which defines a model Entry and a
corresponding admin class called EntryAdmin. This app is not yours and you
don’t want to touch it at all.

In the most common case you simply make use of Python’s support for multiple
inheritance like this:

class MyTranslatedEntryAdmin(EntryAdmin, TranslationAdmin):
 pass

The class is then registered for the admin.site (not to be confused with
modeltranslation’s translator). If EntryAdmin is already registered
through the blog app, it has to be unregistered first:

admin.site.unregister(Entry)
admin.site.register(Entry, MyTranslatedEntryAdmin)

Admin Classes that Override formfield_for_dbfield

In a more complex setup the original EntryAdmin might override
formfield_for_dbfield itself:

class EntryAdmin(model.Admin):
 def formfield_for_dbfield(self, db_field, **kwargs):
 # does some funky stuff with the formfield here

Unfortunately the first example won’t work anymore because Python can only
execute one of the formfield_for_dbfield methods. Since both admin classes
implement this method Python must make a decision and it chooses the first
class EntryAdmin. The functionality from TranslationAdmin will not be
executed and translation in the admin will not work for this class.

But don’t panic, here’s a solution:

class MyTranslatedEntryAdmin(EntryAdmin, TranslationAdmin):
 def formfield_for_dbfield(self, db_field, **kwargs):
 field = super(MyTranslatedEntryAdmin, self).formfield_for_dbfield(db_field, **kwargs)
 self.patch_translation_field(db_field, field, **kwargs)
 return field

This implements the formfield_for_dbfield such that both functionalities
will be executed. The first line calls the superclass method which in this case
will be the one of EntryAdmin because it is the first class inherited from.
The TranslationAdmin capsulates its functionality in the
patch_translation_field method and the formfield_for_dbfield
implementation of the TranslationAdmin class simply calls it. You can copy
this behaviour by calling it from a custom admin class and that’s done in the
example above. After that the field is fully patched for translation and
finally returned.

Admin Inlines

New in version 0.2.

Support for tabular and stacked inlines, common and generic ones.

A translated inline must derive from one of the following classes:

	modeltranslation.admin.TranslationTabularInline

	modeltranslation.admin.TranslationStackedInline

	modeltranslation.admin.TranslationGenericTabularInline

	modeltranslation.admin.TranslationGenericStackedInline

Just like TranslationAdmin these classes implement a special method
formfield_for_dbfield which does all the patching.

For our example we assume that there is new model called Image. Its
definition is left out for simplicity. Our News model inlines the new
model:

from django.contrib import admin
from news.models import Image, News
from modeltranslation.admin import TranslationTabularInline

class ImageInline(TranslationTabularInline):
 model = Image

class NewsAdmin(admin.ModelAdmin):
 list_display = ('title',)
 inlines = [ImageInline,]

admin.site.register(News, NewsAdmin)

Note

In this example only the Image model is registered in
translation.py. It’s not a requirement that NewsAdmin derives from
TranslationAdmin in order to inline a model which is registered for
translation.

Complex Example with Admin Inlines

In this more complex example we assume that the News and Image models
are registered in translation.py. The News model has an own custom
admin class called NewsAdmin and the Image model an own generic stacked
inline class called ImageInline. Furthermore we assume that NewsAdmin
overrides formfield_for_dbfield itself and the admin class is already
registered through the news app.

Note

The example uses the technique described in
TranslationAdmin in combination with other admin classes.

Bringing it all together our code might look like this:

from django.contrib import admin
from news.admin import ImageInline
from news.models import Image, News
from modeltranslation.admin import TranslationAdmin, TranslationGenericStackedInline

class TranslatedImageInline(ImageInline, TranslationGenericStackedInline):
 model = Image

class TranslatedNewsAdmin(NewsAdmin, TranslationAdmin):
 inlines = [TranslatedImageInline,]

 def formfield_for_dbfield(self, db_field, **kwargs):
 field = super(TranslatedNewsAdmin, self).formfield_for_dbfield(db_field, **kwargs)
 self.patch_translation_field(db_field, field, **kwargs)
 return field

admin.site.unregister(News)
admin.site.register(News, NewsAdmin)

Using Tabbed Translation Fields

New in version 0.3.

Modeltranslation supports separation of translation fields via jquery-ui tabs.
The proposed way to include it is through the inner Media class of a
TranslationAdmin class like this:

class NewsAdmin(TranslationAdmin):
 class Media:
 js = (
 'modeltranslation/js/force_jquery.js',
 'http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.24/jquery-ui.min.js',
 'modeltranslation/js/tabbed_translation_fields.js',
)
 css = {
 'screen': ('modeltranslation/css/tabbed_translation_fields.css',),
 }

The force_jquery.js script is necessary when using Django’s built-in
django.jQuery object. Otherwise the normal jQuery object won’t be
available to the included (non-namespaced) jquery-ui library.

Standard jquery-ui theming can be used to customize the look of tabs, the
provided css file is supposed to work well with a default Django admin.

Note

This is just an example and might have to be adopted to your setup.

Using a Custom jQuery Library

If you don’t want to use the jquery library shipped with Django, you can also
include a standard one. While this adds some redundancy it could be useful in
situations where you need certain features from a newer version of jquery
that is not yet included in Django or you rely on a non-namespaced version of
jquery somewhere in your custom admin frontend code or included plugins.

In this case you don’t need the force_jquery.js static provided by
modeltranslation but include the standard jquery library before jquery-ui like
this:

class NewsAdmin(TranslationAdmin):
 class Media:
 js = (
 'http://code.jquery.com/jquery-1.8.2.min.js',
 'http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.24/jquery-ui.min.js',
 'modeltranslation/js/tabbed_translation_fields.js',
)
 css = {
 'screen': ('modeltranslation/css/tabbed_translation_fields.css',),
 }

 Copyright 2009-2012, Peter Eschler, Dirk Eschler.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-modeltranslation 0.4.1 documentation

Management Commands

The update_translation_fields Command

In case the modeltranslation app was installed on an existing project and you
have specified to translate fields of models which are already synced to the
database, you have to update your database schema manually.

Unfortunately the newly added translation fields on the model will be empty
then, and your templates will show the translated value of the fields (see
Rule 1 below) which will be empty in this case. To correctly initialize the
default translation field you can use the update_translation_fields
command:

$./manage.py update_translation_fields

Taken the News example from above this command will copy the value from the
news object’s title field to the default translation field title_de.
It only does so if the default translation field is empty otherwise nothing
is copied.

Note

The command will examine your settings.LANGUAGES variable and the
first language declared there will be used as the default language.

All translated models (as specified in the project’s translation.py will be
populated with initial data.

The sync_translation_fields Command

New in version 0.4.

$./manage.py sync_translation_fields

Todo

Explain

 Copyright 2009-2012, Peter Eschler, Dirk Eschler.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-modeltranslation 0.4.1 documentation

Caveats

Consider the following example (assuming the default language is de):

>>> n = News.objects.create(title="foo")
>>> n.title
'foo'
>>> n.title_de
>>>

Because the original field title was specified in the constructor it is
directly passed into the instance’s __dict__ and the descriptor which
normally updates the associated default translation field (title_de) is not
called. Therefor the call to n.title_de returns an empty value.

Now assign the title, which triggers the descriptor and the default translation
field is updated:

>>> n.title = 'foo'
>>> n.title_de
'foo'
>>>

Accessing Translated Fields Outside Views

Since the modeltranslation mechanism relies on the current language as it
is returned by the get_language function care must be taken when accessing
translated fields outside a view function.

Within a view function the language is set by Django based on a flexible model
described at How Django discovers language preference [http://docs.djangoproject.com/en/dev/topics/i18n/#id2] which is normally used
only by Django’s static translation system.

When a translated field is accessed in a view function or in a template, it
uses the django.utils.translation.get_language function to determine the
current language and return the appropriate value.

Outside a view (or a template), i.e. in normal Python code, a call to the
get_language function still returns a value, but it might not what you
expect. Since no request is involved, Django’s machinery for discovering the
user’s preferred language is not activated.

Todo

Explain more

The unittests in tests.py use the django.utils.translation.trans_real
functions to activate and deactive a specific language outside a view function.

 Copyright 2009-2012, Peter Eschler, Dirk Eschler.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	django-modeltranslation 0.4.1 documentation

Related Projects

Note

This list is horribly outdated and only covers apps that where
available when modeltranslation was initially developed. A more
complete list can be found at djangopackages.com [http://www.djangopackages.com/grids/g/model-translation/].

django-multilingual [http://code.google.com/p/django-multilingual/]

A library providing support for multilingual content in Django models.

It is not possible to reuse existing models without modifying them.

django-multilingual-model [http://code.google.com/p/django-multilingual-model/]

A much simpler version of the above django-multilingual.

It works very similiar to the django-multilingual approach.

transdb

Django’s field that stores labels in more than one language in database.

This approach uses a specialized Field class, which means one has to change
existing models.

i18ndynamic [http://code.google.com/p/i18ndynamic/]

This approach is not developed any more.

django-pluggable-model-i18n [http://code.google.com/p/django-pluggable-model-i18n/]

This app utilizes a new approach to multilingual models based on the same
concept the new admin interface uses. A translation for an existing model
can be added by registering a translation class for that model.

This is more or less what modeltranslation does, unfortunately it is far
from being finished.

 Copyright 2009-2012, Peter Eschler, Dirk Eschler.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	django-modeltranslation 0.4.1 documentation

Index

 Copyright 2009-2012, Peter Eschler, Dirk Eschler.
 Created using Sphinx 1.3.5.

 _static/comment-close.png

authors.html

 Navigation

 		
 index

 		django-modeltranslation 0.4.1 documentation »

Authors

		Peter Eschler <peschler@gmail.com>

		Dirk Eschler <eschler@gmail.com>

Contributors

		Carl J. Meyer

		Jaap Roes

		Bojan Mihelac

		Sébastien Fievet

		Jacek Tomaszewski

		Bruno Tavares

		And many more ...

 © Copyright 2009-2012, Peter Eschler, Dirk Eschler.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		django-modeltranslation 0.4.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2009-2012, Peter Eschler, Dirk Eschler.
 Created using Sphinx 1.3.5.

_static/plus.png

readme.html

 Navigation

 		
 index

 		django-modeltranslation 0.4.1 documentation »

Modeltranslation

The modeltranslation application can be used to translate dynamic content of
existing Django models to an arbitrary number of languages without having to
change the original model classes. It uses a registration approach (comparable
to Django’s admin app) to be able to add translations to existing or new
projects and is fully integrated into the Django admin backend.

The advantage of a registration approach is the ability to add translations to
models on a per-app basis. You can use the same app in different projects,
may they use translations or not, and you never have to touch the original
model class.

[image: https://travis-ci.org/deschler/django-modeltranslation.png?branch=master]
 [https://travis-ci.org/deschler/django-modeltranslation]
Features

		Unlimited number of target languages

		Add translations without changing existing models

		Django admin support

		Supports inherited models

Project Home

https://github.com/deschler/django-modeltranslation

Documentation

https://readthedocs.org/projects/django-modeltranslation

Mailing List

http://groups.google.com/group/django-modeltranslation

 © Copyright 2009-2012, Peter Eschler, Dirk Eschler.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

