

Modeltranslation

The modeltranslation application can be used to translate dynamic content of
existing Django models to an arbitrary number of languages without having to
change the original model classes. It uses a registration approach (comparable
to Django’s admin app) to be able to add translations to existing or new
projects and is fully integrated into the Django admin backend.

The advantage of a registration approach is the ability to add translations to
models on a per-app basis. You can use the same app in different projects,
may they use translations or not, and you never have to touch the original
model class.

[image: https://travis-ci.org/deschler/django-modeltranslation.png?branch=master]
 [https://travis-ci.org/deschler/django-modeltranslation]
Features

	Add translations without changing existing models

	Fast, because translation fields are stored in the same table

	Supports inherited models

	Django admin support

	Unlimited number of target languages

Project Home

https://github.com/deschler/django-modeltranslation

Documentation

https://django-modeltranslation.readthedocs.org/en/latest/

Mailing List

http://groups.google.com/group/django-modeltranslation

Table of Contents

	Installation
	Requirements

	Using Pip

	Using the Source

	Setup

	Configuration
	Required Settings

	Advanced Settings

	Registering Models for Translation
	TranslationOptions fields inheritance

	Changes Automatically Applied to the Model Class

	TranslationOptions attributes reference

	Supported Fields Matrix

	Accessing Translated and Translation Fields
	Rules for Translated Field Access

	Examples for Translated Field Access

	Multilingual Manager

	Falling back

	The State of the Original Field

	ModelForms
	Formfields and nullability

	Django Admin Integration
	Tweaks Applied to the Admin

	TranslationAdmin in Combination with Other Admin Classes

	Admin Inlines

	Using Tabbed Translation Fields

	TranslationAdmin Options

	Management Commands
	The update_translation_fields Command

	The sync_translation_fields Command

	The loaddata Command

	Caveats
	Accessing Translated Fields Outside Views

	How to Contribute

	Related Projects

	ChangeLog

Authors

Core Committers

	Peter Eschler <peschler@gmail.com> (retired)

	Dirk Eschler <eschler@gmail.com>

	Jacek Tomaszewski <jacek.tomek@gmail.com>

Contributors

	Carl J. Meyer

	Jaap Roes

	Bojan Mihelac

	Sébastien Fievet

	Bruno Tavares

	Zach Mathew (of django-linguo [https://github.com/zmathew/django-linguo], initial author of MultilingualManager)

	Mihai Sucan

	Benoît Bryon

	Wojtek Ruszczewski

	Chris Adams

	Dominique Lederer

	Braden MacDonald

	Karol Fuksiewicz

	Konrad Wojas

	Bas Peschier

	Oleg Prans

	And many more ... (if you miss your name here, please let us know!)

Installation

Requirements

	Modeltranslation
	Python
	Django

	>=0.7
	3.2 - 3.3
	1.5 - 1.6

	2.6 - 2.7
	1.4 - 1.6

	==0.5, ==0.6
	2.6 - 2.7
	1.5

	2.5 - 2.7
	1.3 - 1.4

	==0.4
	2.5 - 2.7
	1.3 - 1.4

	<=0.3
	2.4 - 2.7
	1.0 - 1.4

Using Pip

$ pip install django-modeltranslation

Using the Source

Get a source tarball from pypi [http://pypi.python.org/pypi/django-modeltranslation/], unpack, then install with:

$ python setup.py install

Note

As an alternative, if you don’t want to mess with any packaging tool,
unpack the tarball and copy/move the modeltranslation directory
to a path listed in your PYTHONPATH environment variable.

Setup

To setup the application please follow these steps. Each step is described
in detail in the following sections:

	Add the modeltranslation app to the INSTALLED_APPS variable of your
project’s settings.py.

	Set USE_I18N = True in settings.py.

	Configure your LANGUAGES in settings.py.

	Create a translation.py in your app directory and register
TranslationOptions for every model you want to translate.

	Sync the database using ./manage.py syncdb (note that this only applies
if the models registered in the translation.py did not have been
synced to the database before. If they did - read further down what to do
in that case.

Configuration

Required Settings

The following variables have to be added to or edited in the project’s
settings.py:

INSTALLED_APPS

Make sure that the modeltranslation app is listed in your
INSTALLED_APPS variable:

INSTALLED_APPS = (
 ...
 'modeltranslation',

)

LANGUAGES

The LANGUAGES variable must contain all languages used for translation. The
first language is treated as the default language.

The modeltranslation application uses the list of languages to add localized
fields to the models registered for translation. To use the languages de
and en in your project, set the LANGUAGES variable like this (where
de is the default language):

gettext = lambda s: s
LANGUAGES = (
 ('de', gettext('German')),
 ('en', gettext('English')),
)

Note

The gettext lambda function is not a feature of modeltranslation, but
rather required for Django to be able to (statically) translate the verbose
names of the languages using the standard i18n solution.

Warning

Modeltranslation does not enforce the LANGUAGES setting to be defined
in your project. When it isn’t present, it defaults to Django’s
global LANGUAGES setting [https://github.com/django/django/blob/master/django/conf/global_settings.py]
instead, and that are quite a number of languages!

Advanced Settings

Modeltranslation also has some advanced settings to customize its behaviour.

MODELTRANSLATION_DEFAULT_LANGUAGE

New in version 0.3.

Default: None

To override the default language as described in LANGUAGES,
you can define a language in MODELTRANSLATION_DEFAULT_LANGUAGE. Note that
the value has to be in settings.LANGUAGES, otherwise an
ImproperlyConfigured exception will be raised.

Example:

MODELTRANSLATION_DEFAULT_LANGUAGE = 'en'

MODELTRANSLATION_FALLBACK_LANGUAGES

New in version 0.5.

Default: (DEFAULT_LANGUAGE,)

By default modeltranslation will fallback to the computed value of the
DEFAULT_LANGUAGE. This is either the first language found in the
LANGUAGES setting or the value defined through
MODELTRANSLATION_DEFAULT_LANGUAGE which acts as an override.

This setting allows for a more fine grained tuning of the fallback behaviour
by taking additional languages into account. The language order is defined as
a tuple or list of language codes.

Example:

MODELTRANSLATION_FALLBACK_LANGUAGES = ('en', 'de')

Using a dict syntax it is also possible to define fallbacks by language.
A default key is required in this case to define the default behaviour
of unlisted languages.

Example:

MODELTRANSLATION_FALLBACK_LANGUAGES = {'default': ('en', 'de'), 'fr': ('de',)}

Note

Each language has to be in the LANGUAGES setting, otherwise an
ImproperlyConfigured exception is raised.

MODELTRANSLATION_PREPOPULATE_LANGUAGE

New in version 0.7.

Default: current active language

By default modeltranslation will use the current request language for prepopulating
admin fields specified in the prepopulated_fields admin property. This is often
used to automatically fill slug fields.

This setting allows you to pin this functionality to a specific language.

Example:

MODELTRANSLATION_PREPOPULATE_LANGUAGE = 'en'

Note

The language has to be in the LANGUAGES setting, otherwise an
ImproperlyConfigured exception is raised.

MODELTRANSLATION_TRANSLATION_FILES

New in version 0.4.

Default: () (empty tuple)

Modeltranslation uses an autoregister feature similiar to the one in Django’s
admin. The autoregistration process will look for a translation.py
file in the root directory of each application that is in INSTALLED_APPS.

The setting MODELTRANSLATION_TRANSLATION_FILES is provided to extend the
modules that are taken into account.

Syntax:

MODELTRANSLATION_TRANSLATION_FILES = (
 '<APP1_MODULE>.translation',
 '<APP2_MODULE>.translation',
)

Example:

MODELTRANSLATION_TRANSLATION_FILES = (
 'news.translation',
 'projects.translation',
)

Note

Modeltranslation up to version 0.3 used a single project wide registration
file which was defined through
MODELTRANSLATION_TRANSLATION_REGISTRY = '<PROJECT_MODULE>.translation'.

In version 0.4 and 0.5, for backwards compatibiliy, the module defined through this setting was
automatically added to MODELTRANSLATION_TRANSLATION_FILES. A
DeprecationWarning was issued in this case.

In version 0.6 MODELTRANSLATION_TRANSLATION_REGISTRY is handled no more.

MODELTRANSLATION_CUSTOM_FIELDS

Default: () (empty tuple)

New in version 0.3.

Modeltranslation supports the fields listed in the
Supported Fields Matrix. In most cases subclasses of the supported
fields will work fine, too. Unsupported fields will throw an
ImproperlyConfigured exception.

The list of supported fields can be extended by defining a tuple of field
names in your settings.py.

Example:

MODELTRANSLATION_CUSTOM_FIELDS = ('MyField', 'MyOtherField',)

Warning

This just prevents modeltranslation from throwing an
ImproperlyConfigured exception. Any unsupported field will most
likely fail in one way or another. The feature is considered experimental
and might be replaced by a more sophisticated mechanism in future versions.

MODELTRANSLATION_AUTO_POPULATE

Default: False

New in version 0.5.

This setting controls if the Multilingual Manager should automatically
populate language field values in its create and get_or_create method, and in model
constructors, so that these two blocks of statements can be considered equivalent:

News.objects.populate(True).create(title='-- no translation yet --')
with auto_populate(True):
 q = News(title='-- no translation yet --')

same effect with MODELTRANSLATION_AUTO_POPULATE == True:

News.objects.create(title='-- no translation yet --')
q = News(title='-- no translation yet --')

Possible modes are listed here.

MODELTRANSLATION_DEBUG

Default: False

New in version 0.4.

Changed in version 0.7.

Used for modeltranslation related debug output. Currently setting it to
False will just prevent Django’s development server from printing the
Registered xx models for translation message to stdout.

MODELTRANSLATION_ENABLE_FALLBACKS

Default: True

New in version 0.6.

Control if fallback (both language and value) will occur.

MODELTRANSLATION_LOADDATA_RETAIN_LOCALE

Default: True

New in version 0.7.

Control if the loaddata command should leave the settings-defined locale alone. Setting it
to False will result in previous behaviour of loaddata: inserting fixtures to database
under en-us locale.

Registering Models for Translation

Modeltranslation can translate model fields of any model class. For each model
to translate a translation option class containing the fields to translate is
registered with a special object called the translator.

Registering models and their fields for translation requires the following
steps:

	Create a translation.py in your app directory.

	Create a translation option class for every model to translate.

	Register the model and the translation option class at the
modeltranslation.translator.translator.

The modeltranslation application reads the translation.py file in your
app directory thereby triggering the registration of the translation
options found in the file.

A translation option is a class that declares which fields of a model to
translate. The class must derive from
modeltranslation.translator.TranslationOptions and it must provide a
fields attribute storing the list of fieldnames. The option class must be
registered with the modeltranslation.translator.translator instance.

To illustrate this let’s have a look at a simple example using a News
model. The news in this example only contains a title and a text field.
Instead of a news, this could be any Django model class:

class News(models.Model):
 title = models.CharField(max_length=255)
 text = models.TextField()

In order to tell the modeltranslation app to translate the title and
text field, create a translation.py file in your news app directory and
add the following:

from modeltranslation.translator import translator, TranslationOptions
from news.models import News

class NewsTranslationOptions(TranslationOptions):
 fields = ('title', 'text',)

translator.register(News, NewsTranslationOptions)

Note that this does not require to change the News model in any way, it’s
only imported. The NewsTranslationOptions derives from
TranslationOptions and provides the fields attribute. Finally the model
and its translation options are registered at the translator object.

At this point you are mostly done and the model classes registered for
translation will have been added some auto-magical fields. The next section
explains how things are working under the hood.

TranslationOptions fields inheritance

New in version 0.5.

A subclass of any TranslationOptions will inherit fields from its bases
(similar to the way Django models inherit fields, but with a different syntax).

from modeltranslation.translator import translator, TranslationOptions
from news.models import News, NewsWithImage

class NewsTranslationOptions(TranslationOptions):
 fields = ('title', 'text',)

class NewsWithImageTranslationOptions(NewsTranslationOptions):
 fields = ('image',)

translator.register(News, NewsTranslationOptions)
translator.register(NewsWithImage, NewsWithImageTranslationOptions)

The above example adds the fields title and text from the
NewsTranslationOptions class to NewsWithImageTranslationOptions, or to
say it in code:

assert NewsWithImageTranslationOptions.fields == ('title', 'text', 'image')

Of course multiple inheritance and inheritance chains (A > B > C) also work as
expected.

Note

When upgrading from a previous modeltranslation version, please
review your TranslationOptions classes and see if introducing fields
inheritance broke the project (if you had always subclassed
TranslationOptions only, there is no risk).

Changes Automatically Applied to the Model Class

After registering the News model for translation a SQL dump of the news
app will look like this:

$./manage.py sqlall news
BEGIN;
CREATE TABLE `news_news` (
 `id` integer AUTO_INCREMENT NOT NULL PRIMARY KEY,
 `title` varchar(255) NOT NULL,
 `title_de` varchar(255) NULL,
 `title_en` varchar(255) NULL,
 `text` longtext NULL,
 `text_de` longtext NULL,
 `text_en` longtext NULL,
)
;
CREATE INDEX `news_news_page_id` ON `news_news` (`page_id`);
COMMIT;

Note the title_de, title_en, text_de and text_en fields which
are not declared in the original News model class but rather have been
added by the modeltranslation app. These are called translation fields. There
will be one for every language in your project’s settings.py.

The name of these additional fields is build using the original name of the
translated field and appending one of the language identifiers found in the
settings.LANGUAGES.

As these fields are added to the registered model class as fully valid Django
model fields, they will appear in the db schema for the model although it has
not been specified on the model explicitly.

Committing fields to database

If you are starting a fresh project and have considered your translation needs
in the beginning then simply sync your database (./manage.py syncdb or
./manage.py schemamigration myapp --initial if using South)
and you are ready to use the translated models.

In case you are translating an existing project and your models have already
been synced to the database you will need to alter the tables in your database
and add these additional translation fields. If you are using South, you’re
done: simply create a new migration (South will detect newly added translation
fields) and apply it. If not, you can use a little helper:
The sync_translation_fields Command which can execute schema-ALTERing SQL
to add new fields. Use either of these two solutions, not both.

If you are adding translation fields to third-party app that is using South,
things get more complicated. In order to be able to update the app in future,
and to feel comfortable, you should use the sync_translation_fields command.
Although it’s possible to introduce new fields in a migration, it’s nasty and
involves copying migration files, using SOUTH_MIGRATION_MODULES setting,
and passing --delete-ghost-migrations flag, so we don’t recommend it.
Invoking sync_translation_fields is plain easier.

Note that all added fields are
declared blank=True and null=True no matter if the original field is
required or not. In other words - all translations are optional. To populate
the default translation fields added by the modeltranslation application
with values from existing database fields, you
can use the update_translation_fields command below. See
The update_translation_fields Command for more info on this.

TranslationOptions attributes reference

Quick cheatsheet with links to proper docs sections and examples showing expected syntax.

Classes inheriting from TranslationOptions can have following attributes defined:

	
TranslationOptions.fields(required)

	List of translatable model fields. See Registering Models for Translation.

Some fields can be implicitly added through inheritance, see TranslationOptions fields inheritance.

	
TranslationOptions.fallback_languages

	Control order of languages for fallback purposes. See Fallback languages.

fallback_languages = {'default': ('en', 'de', 'fr'), 'uk': ('ru',)}

	
TranslationOptions.fallback_values

	Set the value that should be used if no fallback language yielded a value.
See Fallback values.

fallback_values = _('-- sorry, no translation provided --')
fallback_values = {'title': _('Object not translated'), 'text': '---'}

	
TranslationOptions.fallback_undefined

	Set what value should be considered “no value”. See Fallback undefined.

fallback_undefined = None
fallback_undefined = {'title': 'no title', 'text': None}

	
TranslationOptions.empty_values

	Override the value that should be saved in forms on empty fields.
See Formfields and nullability.

empty_values = ''
empty_values = {'title': '', 'slug': None, 'desc': 'both'}

Supported Fields Matrix

While the main purpose of modeltranslation is to translate text-like fields,
translating other fields can be useful in several situations. The table lists
all model fields available in Django and gives an overview about their current
support status:

	Model Field
	0.4
	0.5
	0.7

	AutoField
	No
	No
	No

	BigIntegerField
	No
	Yes*
	Yes*

	BooleanField
	No
	Yes
	Yes

	CharField
	Yes
	Yes
	Yes

	CommaSeparatedIntegerField
	No
	Yes
	Yes

	DateField
	No
	Yes
	Yes

	DateTimeField
	No
	Yes
	Yes

	DecimalField
	No
	Yes
	Yes

	EmailField
	Yes*
	Yes*
	Yes*

	FileField
	Yes
	Yes
	Yes

	FilePathField
	Yes*
	Yes*
	Yes*

	FloatField
	No
	Yes
	Yes

	ImageField
	Yes
	Yes
	Yes

	IntegerField
	No
	Yes
	Yes

	IPAddressField
	No
	Yes
	Yes

	GenericIPAddressField
	No
	Yes
	Yes

	NullBooleanField
	No
	Yes
	Yes

	PositiveIntegerField
	No
	Yes*
	Yes*

	PositiveSmallIntegerField
	No
	Yes*
	Yes*

	SlugField
	Yes*
	Yes*
	Yes*

	SmallIntegerField
	No
	Yes*
	Yes*

	TextField
	Yes
	Yes
	Yes

	TimeField
	No
	Yes
	Yes

	URLField
	Yes*
	Yes*
	Yes*

	ForeignKey
	No
	No
	Yes

	OneToOneField
	No
	No
	Yes

	ManyToManyField
	No
	No
	No

* Implicitly supported (as subclass of a supported field)

Accessing Translated and Translation Fields

The modeltranslation app changes the behaviour of the translated fields. To
explain this consider the news example from the Registering Models for Translation chapter
again. The original News model looked like this:

class News(models.Model):
 title = models.CharField(max_length=255)
 text = models.TextField()

Now that it is registered with the modeltranslation app the model looks
like this - note the additional fields automatically added by the app:

class News(models.Model):
 title = models.CharField(max_length=255) # original/translated field
 title_de = models.CharField(null=True, blank=True, max_length=255) # default translation field
 title_en = models.CharField(null=True, blank=True, max_length=255) # translation field
 text = models.TextField() # original/translated field
 text_de = models.TextField(null=True, blank=True) # default translation field
 text_en = models.TextField(null=True, blank=True) # translation field

The example above assumes that the default language is de, therefore the
title_de and text_de fields are marked as the default translation
fields. If the default language is en, the title_en and text_en
fields would be the default translation fields.

Rules for Translated Field Access

Changed in version 0.5.

So now when it comes to setting and getting the value of the original and the
translation fields the following rules apply:

Rule 1

Reading the value from the original field returns the value translated to
the current language.

Rule 2

Assigning a value to the original field updates the value in the associated
current language translation field.

Rule 3

If both fields - the original and the current language translation field -
are updated at the same time, the current language translation field wins.

Note

This can only happen in the model’s constructor or
objects.create. There is no other situation which can be considered
changing several fields at the same time.

Examples for Translated Field Access

Because the whole point of using the modeltranslation app is translating
dynamic content, the fields marked for translation are somehow special when it
comes to accessing them. The value returned by a translated field is depending
on the current language setting. “Language setting” is referring to the Django
set_language [https://docs.djangoproject.com/en/dev/topics/i18n/translation/#set-language-redirect-view] view and the corresponding get_lang function.

Assuming the current language is de in the news example from above, the
translated title field will return the value from the title_de field:

Assuming the current language is "de"
n = News.objects.all()[0]
t = n.title # returns german translation

Assuming the current language is "en"
t = n.title # returns english translation

This feature is implemented using Python descriptors making it happen without
the need to touch the original model classes in any way. The descriptor uses
the django.utils.i18n.get_language function to determine the current
language.

Todo

Add more examples.

Multilingual Manager

New in version 0.5.

Every model registered for translation is patched so that all its managers become subclasses
of MultilingualManager (of course, if a custom manager was defined on the model, its
functions will be retained). MultilingualManager simplifies language-aware queries,
especially on third-party apps, by rewriting query field names.

Every model’s manager is patched, not only objects (even managers inherited from abstract base
classes).

For example:

Assuming the current language is "de",
these queries returns the same objects
news1 = News.objects.filter(title__contains='enigma')
news2 = News.objects.filter(title_de__contains='enigma')

assert news1 == news2

It works as follow: if the translation field name is used (title), it is changed into the
current language field name (title_de or title_en, depending on the current active
language).
Any language-suffixed names are left untouched (so title_en wouldn’t change,
no matter what the current language is).

Rewriting of field names works with operators (like __in, __ge) as well as with
relationship spanning. Moreover, it is also handled on Q and F expressions.

These manager methods perform rewriting:

	filter(), exclude(), get()

	order_by()

	update()

	only(), defer()

	values(), values_list()

	dates()

	create(), with optional auto-population feature

In order not to introduce differences between X.objects.create(...) and X(...), model
constructor is also patched and performs rewriting of field names prior to regular initialization.

If one wants to turn rewriting of field names off, this can be easily achieved with
rewrite(mode) method. mode is a boolean specifying whether rewriting should be applied.
It can be changed several times inside a query. So X.objects.rewrite(False) turns rewriting off.

MultilingualManager offers one additional method: raw_values. It returns actual values from
the database, without field names rewriting. Useful for checking translated field database value.

Auto-population

Changed in version 0.6.

There is special manager method populate(mode) which can trigger create() or
get_or_create() to populate all translation (language) fields with values from translated
(original) ones. It can be very convenient when working with many languages. So:

x = News.objects.populate(True).create(title='bar')

is equivalent of:

x = News.objects.create(title_en='bar', title_de='bar') ## title_?? for every language

Moreover, some fields can be explicitly assigned different values:

x = News.objects.populate(True).create(title='-- no translation yet --', title_de='enigma')

It will result in title_de == 'enigma' and other title_?? == '-- no translation yet --'.

There is another way of altering the current population status, an auto_populate context manager:

from modeltranslation.utils import auto_populate

with auto_populate(True):
 x = News.objects.create(title='bar')

Auto-population tooks place also in model constructor, what is extremely useful when loading
non-translated fixtures. Just remember to use the context manager:

with auto_populate(): # True can be ommited
 call_command('loaddata', 'fixture.json') # Some fixture loading

 z = News(title='bar')
 print z.title_en, z.title_de # prints 'bar bar'

There is a more convenient way than calling populate manager method or entering
auto_populate manager context all the time:
MODELTRANSLATION_AUTO_POPULATE setting.
It controls the default population behaviour.

Auto-population modes

There are 4 different population modes:

	False

	[set by default]

Auto-population turned off

	True or 'all'

	[default argument to population altering methods]

Auto-population turned on, copying translated field value to all other languages
(unless a translation field value is provided)

	'default'

	Auto-population turned on, copying translated field value to default language field
(unless its value is provided)

	'required'

	Acts like 'default', but copy value only if the original field is non-nullable

Falling back

Modeltranslation provides mechanism to control behaviour of data access in case of empty
translation values. This mechanism affects field access.

Consider News example: a creator of some news hasn’t specified it’s german title and content,
but only english ones. Then if a german visitor is viewing site, we would rather show him english
title/content of the news than display empty strings. This is called fallback.

News.title_en = 'English title'
News.title_de = ''
print News.title
If current active language is german, it should display title_de field value ('').
But if fallback is enabled, it would display 'English title' instead.

There are several ways of controlling fallback, described below.

Fallback languages

New in version 0.5.

MODELTRANSLATION_FALLBACK_LANGUAGES setting allows to set order of fallback
languages. By default it is only DEFAULT_LANGUAGE.

For example, setting

MODELTRANSLATION_FALLBACK_LANGUAGES = ('en', 'de', 'fr')

means: if current active language field value is unset, try english value. If it is also unset,
try german, and so on - until some language yield non-empty value of the field.

There is also option to define fallback by language, using dict syntax:

MODELTRANSLATION_FALLBACK_LANGUAGES = {
 'default': ('en', 'de', 'fr'),
 'fr': ('de',),
 'uk': ('ru',)
}

The default key is required and its value denote languages which are always tried at the end.
With such a setting:

	for uk (Ukrainian) order of fallback languages is: ('ru', 'en', 'de', 'fr')

	for fr order of fallback languages is: ('de', 'en') - fr obviously is not fallback, since
it’s active language; and de would be tried before en

	for en and de fallback order is ('de', 'fr') and ('en', 'fr'), respectively

	for any other language order of fallback languages is just ('en', 'de', 'fr')

What is more, fallback languages order can be overridden per model, using TranslationOptions:

class NewsTranslationOptions(TranslationOptions):
 fields = ('title', 'text',)
 fallback_languages = {'default': ('fa', 'km')} # use Persian and Khmer as fallback for News

Dict syntax is only allowed there.

New in version 0.6.

Even more, all fallbacks may be switched on or off for just some exceptional block of code using:

from modeltranslation.utils import fallbacks

with fallbacks(False):
 # Work with values for the active language only

Fallback values

New in version 0.4.

But what if current language and all fallback languages yield no field value? Then modeltranslation
will use field’s fallback value, if one was defined.

Fallback values are defined in TranslationOptions, for example:

class NewsTranslationOptions(TranslationOptions):
 fields = ('title', 'text',)
 fallback_values = _('-- sorry, no translation provided --')

In this case, if title is missing in active language and any of fallback languages, news title
will be '-- sorry, no translation provided --' (maybe translated, since gettext is used).
Empty text will be handled in same way.

Fallback values can be also customized per model field:

class NewsTranslationOptions(TranslationOptions):
 fields = ('title', 'text',)
 fallback_values = {
 'title': _('-- sorry, this news was not translated --'),
 'text': _('-- please contact our translator (translator@example.com) --')
 }

If current language and all fallback languages yield no field value, and no fallback values are
defined, then modeltranslation will use field’s default value.

Fallback undefined

New in version 0.7.

Another question is what do we consider “no value”, on what value should we fall back to other
translations? For text fields the empty string can usually be considered as the undefined value,
but other fields may have different concepts of empty or missing value.

Modeltranslation defaults to using the field’s default value as the undefined value (the empty
string for non-nullable CharFields). This requires calling get_default for every field
access, which in some cases may be expensive.

If you’d like to fallback on a different value or your default is expensive to calculate, provide
a custom undefined value (for a field or model):

class NewsTranslationOptions(TranslationOptions):
 fields = ('title', 'text',)
 fallback_undefined = {
 'title': 'no title',
 'text': None
 }

The State of the Original Field

Changed in version 0.5.

As defined by the Rules for Translated Field Access, accessing the original field is guaranteed to
work on the associated translation field of the current language. This applies
to both, read and write operations.

The actual field value (which can still be accessed through
instance.__dict__['original_field_name']) however has to be considered
undetermined once the field has been registered for translation.
Attempts to keep the value in sync with either the default or current
language’s field value has raised a boatload of unpredictable side effects in
older versions of modeltranslation.

Warning

Do not rely on the underlying value of the original field in any way!

Todo

Perhaps outline effects this might have on the update_translation_field
management command.

ModelForms

Editing multilanguage models with all translation fields in the admin backend is quite sensible.
However, presenting all model fields to the user on the frontend may be not the right way.
Here comes the TranslationModelForm which strip out all translation fields:

from news.models import News
from modeltranslation.forms import TranslationModelForm

class MyForm(TranslationModelForm):
 class Meta:
 model = News

Such a form will contain only original fields (title, text - see example).
Of course, upon saving, provided values would be set on proper attributes, depending on the user
current language.

Formfields and nullability

New in version 0.7.1.

Note

Please remember that all translation fields added to model definition are nullable
(null=True), regardless of the original field nullability.

In most cases formfields for translation fields behave as expected. However, there is one annoying
problem with models.CharField - probably the most commonly translated field type.

The problem is that default formfield for CharField stores empty values as empty strings
(''), even if field is nullable
(see django ticket #9590 [http://code.djangoproject.com/ticket/9590]).

Thus formfields for translation fields are patched by MT. Following rules apply:

	If original field is not nullable, empty value would be saved as '';

	If original field is nullable, empty value would be saved as None.

To deal with complex cases, these rules can be overridden per model or even per field
(using TranslationOptions):

class NewsTranslationOptions(TranslationOptions):
 fields = ('title', 'text',)
 empty_values = None

class ProjectTranslationOptions(TranslationOptions):
 fields = ('name', 'slug', 'description',)
 empty_values = {'name': '', 'slug': None}

If a field is not mentioned while using dict syntax, the default rules
apply.

This configuration is especially useful for fields with unique constraints:

class Category(models.Model):
 name = models.CharField(max_length=40)
 slug = models.SlugField(max_length=30, unique=True)

Because the slug field is not nullable, its translation fields would store empty values as
'' and that would result in error when 2 or more Categories are saved with
slug_en empty - unique constraints wouldn’t be satisfied. Instead, None should be stored,
as several None values in database don’t violate uniqueness:

class CategoryTranslationOptions(TranslationOptions):
 fields = ('name', 'slug')
 empty_values = {'slug': None}

None-checkbox widget

Maybe there is a situation when somebody want to store in a field both empty strings and None
values. For such a scenario there is third configuration value: 'both':

class NewsTranslationOptions(TranslationOptions):
 fields = ('title', 'text',)
 empty_values = {'title': None, 'text': 'both'}

It results in special widget with a None-checkbox to null a field. It’s not recommended in frontend
as users may be confused what this None is. Probably only useful place for this widget is admin
backend; see Formfields with None-checkbox.

To sum up, only valid empty_values values are: None, '' and 'both'.

Django Admin Integration

In order to be able to edit the translations via the django.contrib.admin
application you need to register a special admin class for the translated
models. The admin class must derive from
modeltranslation.admin.TranslationAdmin which does some funky
patching on all your models registered for translation. Taken the
news example the most simple case would look like:

from django.contrib import admin
from news.models import News
from modeltranslation.admin import TranslationAdmin

class NewsAdmin(TranslationAdmin):
 pass

admin.site.register(News, NewsAdmin)

Tweaks Applied to the Admin

formfield_for_dbfield

The TranslationBaseModelAdmin class, which TranslationAdmin and all
inline related classes in modeltranslation derive from, implements a special
method which is def formfield_for_dbfield(self, db_field, **kwargs). This
method does the following:

	Copies the widget of the original field to each of its translation fields.

	Checks if the original field was required and if so makes the default
translation field required instead.

get_form/get_fieldsets/_declared_fieldsets

In addition the TranslationBaseModelAdmin class overrides get_form,
get_fieldsets and _declared_fieldsets to make the options fields,
exclude and fieldsets work in a transparent way. It basically does:

	Removes the original field from every admin form by adding it to
exclude under the hood.

	Replaces the - now removed - orginal fields with their corresponding
translation fields.

Taken the fieldsets option as an example, where the title field is
registered for translation but not the news field:

class NewsAdmin(TranslationAdmin):
 fieldsets = [
 (u'News', {'fields': ('title', 'news',)})
]

In this case get_fieldsets will return a patched fieldset which contains
the translation fields of title, but not the original field:

>>> a = NewsAdmin(NewsModel, site)
>>> a.get_fieldsets(request)
[(u'News', {'fields': ('title_de', 'title_en', 'news',)})]

TranslationAdmin in Combination with Other Admin Classes

If there already exists a custom admin class for a translated model and you
don’t want or can’t edit that class directly there is another solution.

Taken a (fictional) reusable blog app which defines a model Entry and a
corresponding admin class called EntryAdmin. This app is not yours and you
don’t want to touch it at all.

In the most common case you simply make use of Python’s support for multiple
inheritance like this:

class MyTranslatedEntryAdmin(EntryAdmin, TranslationAdmin):
 pass

The class is then registered for the admin.site (not to be confused with
modeltranslation’s translator). If EntryAdmin is already registered
through the blog app, it has to be unregistered first:

admin.site.unregister(Entry)
admin.site.register(Entry, MyTranslatedEntryAdmin)

Admin Classes that Override formfield_for_dbfield

In a more complex setup the original EntryAdmin might override
formfield_for_dbfield itself:

class EntryAdmin(model.Admin):
 def formfield_for_dbfield(self, db_field, **kwargs):
 # does some funky stuff with the formfield here

Unfortunately the first example won’t work anymore because Python can only
execute one of the formfield_for_dbfield methods. Since both admin classes
implement this method Python must make a decision and it chooses the first
class EntryAdmin. The functionality from TranslationAdmin will not be
executed and translation in the admin will not work for this class.

But don’t panic, here’s a solution:

class MyTranslatedEntryAdmin(EntryAdmin, TranslationAdmin):
 def formfield_for_dbfield(self, db_field, **kwargs):
 field = super(MyTranslatedEntryAdmin, self).formfield_for_dbfield(db_field, **kwargs)
 self.patch_translation_field(db_field, field, **kwargs)
 return field

This implements the formfield_for_dbfield such that both functionalities
will be executed. The first line calls the superclass method which in this case
will be the one of EntryAdmin because it is the first class inherited from.
The TranslationAdmin capsulates its functionality in the
patch_translation_field method and the formfield_for_dbfield
implementation of the TranslationAdmin class simply calls it. You can copy
this behaviour by calling it from a custom admin class and that’s done in the
example above. After that the field is fully patched for translation and
finally returned.

Admin Inlines

New in version 0.2.

Support for tabular and stacked inlines, common and generic ones.

A translated inline must derive from one of the following classes:

	modeltranslation.admin.TranslationTabularInline

	modeltranslation.admin.TranslationStackedInline

	modeltranslation.admin.TranslationGenericTabularInline

	modeltranslation.admin.TranslationGenericStackedInline

Just like TranslationAdmin these classes implement a special method
formfield_for_dbfield which does all the patching.

For our example we assume that there is a new model called Image. The
definition is left out for simplicity. Our News model inlines the new
model:

from django.contrib import admin
from news.models import Image, News
from modeltranslation.admin import TranslationTabularInline

class ImageInline(TranslationTabularInline):
 model = Image

class NewsAdmin(admin.ModelAdmin):
 list_display = ('title',)
 inlines = [ImageInline,]

admin.site.register(News, NewsAdmin)

Note

In this example only the Image model is registered in
translation.py. It’s not a requirement that NewsAdmin derives from
TranslationAdmin in order to inline a model which is registered for
translation.

Complex Example with Admin Inlines

In this more complex example we assume that the News and Image models
are registered in translation.py. The News model has an own custom
admin class called NewsAdmin and the Image model an own generic stacked
inline class called ImageInline. Furthermore we assume that NewsAdmin
overrides formfield_for_dbfield itself and the admin class is already
registered through the news app.

Note

The example uses the technique described in
TranslationAdmin in combination with other admin classes.

Bringing it all together our code might look like this:

from django.contrib import admin
from news.admin import ImageInline
from news.models import Image, News
from modeltranslation.admin import TranslationAdmin, TranslationGenericStackedInline

class TranslatedImageInline(ImageInline, TranslationGenericStackedInline):
 model = Image

class TranslatedNewsAdmin(NewsAdmin, TranslationAdmin):
 inlines = [TranslatedImageInline,]

 def formfield_for_dbfield(self, db_field, **kwargs):
 field = super(TranslatedNewsAdmin, self).formfield_for_dbfield(db_field, **kwargs)
 self.patch_translation_field(db_field, field, **kwargs)
 return field

admin.site.unregister(News)
admin.site.register(News, NewsAdmin)

Using Tabbed Translation Fields

New in version 0.3.

Modeltranslation supports separation of translation fields via jquery-ui tabs.
The proposed way to include it is through the inner Media class of a
TranslationAdmin class like this:

class NewsAdmin(TranslationAdmin):
 class Media:
 js = (
 'modeltranslation/js/force_jquery.js',
 'http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.24/jquery-ui.min.js',
 'modeltranslation/js/tabbed_translation_fields.js',
)
 css = {
 'screen': ('modeltranslation/css/tabbed_translation_fields.css',),
 }

Note

Here we stick to the jquery library shipped with Django. The
force_jquery.js script is necessary when using Django’s built-in
django.jQuery object. Otherwise the normal jQuery object won’t
be available to the included (non-namespaced) jquery-ui library.

Standard jquery-ui theming can be used to customize the look of tabs, the
provided css file is supposed to work well with a default Django admin.

As an alternative, if want to use a more recent version of jquery, you can do so
by including this in your Media class instead:

class NewsAdmin(TranslationAdmin):
 class Media:
 js = (
 'http://ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js',
 'http://ajax.googleapis.com/ajax/libs/jqueryui/1.10.2/jquery-ui.min.js',
 'modeltranslation/js/tabbed_translation_fields.js',
)
 css = {
 'screen': ('modeltranslation/css/tabbed_translation_fields.css',),
 }

Tabbed Translation Fields Admin Classes

New in version 0.7.

To ease the inclusion of the required static files for tabbed translation
fields, the following admin classes are provided:

	TabbedDjangoJqueryTranslationAdmin (aliased to TabbedTranslationAdmin)

	TabbedExternalJqueryTranslationAdmin

Rather than inheriting from TranslationAdmin, simply subclass one of these
classes like this:

class NewsAdmin(TabbedTranslationAdmin):
 pass

TranslationAdmin Options

TranslationAdmin.group_fieldsets

New in version 0.6.

When this option is activated untranslated and translation fields are grouped
into separate fieldsets. The first fieldset contains the untranslated fields,
followed by a fieldset for each translation field. The translation field
fieldsets use the original field’s verbose_name as a label.

Activating the option is a simple way to reduce the visual clutter one might
experience when mixing these different types of fields.

The group_fieldsets option expects a boolean. By default fields are not
grouped into fieldsets (group_fieldsets = False).

A few simple policies are applied:

	A fieldsets option takes precedence over the group_fieldsets option.

	Other default ModelAdmin options like exclude are respected.

class NewsAdmin(TranslationAdmin):
 group_fieldsets = True

Formfields with None-checkbox

There is the special widget which allow to choose whether empty field value should be stores as
empty string or None (see None-checkbox widget).
In TranslationAdmin some fields can use this widget regardless of their empty_values
setting:

class NewsAdmin(TranslationAdmin):
 both_empty_values_fields = ('title', 'text')

Management Commands

The update_translation_fields Command

In case the modeltranslation app was installed on an existing project and you
have specified to translate fields of models which are already synced to the
database, you have to update your database schema (see Committing fields to database).

Unfortunately the newly added translation fields on the model will be empty
then, and your templates will show the translated value of the fields (see
Rule 1) which will be empty in this case. To correctly initialize the
default translation field you can use the update_translation_fields
command:

$./manage.py update_translation_fields

Taken the news example used throughout the documentation this command will copy
the value from the news object’s title field to the default translation
field title_de. It only does so if the default translation field is empty
otherwise nothing is copied.

Note

Unless you configured modeltranslation to
override the default language
the command will examine your settings.LANGUAGES variable and the first
language declared there will be used as the default language.

All translated models (as specified in the translation files) from all apps will be
populated with initial data.

The sync_translation_fields Command

New in version 0.4.

$./manage.py sync_translation_fields

This command compares the database and translated models definitions (finding new translation
fields) and provides SQL statements to alter tables. You should run this command after adding
new language or deciding to translate new field in a TranslationOptions.

However, if you are using South in your project, in most cases it’s recommended to use migration
instead of sync_translation_fields. See Committing fields to database for detailed info and use cases.

The loaddata Command

New in version 0.7.

It is just extension to original loaddata command which adds an optional populate keyword.
If specified, then normal loading command will be run under selected auto-population modes.

By default no auto-population is performed.

$./manage.py loaddata --populate=all fixtures.json

Allowed modes are listed here. To choose False
(turn off auto-population) specify '0' or 'false':

$./manage.py loaddata --populate=false fixtures.json
$./manage.py loaddata --populate=0 fixtures.json

Note

If populate is not specified, then current auto-population mode is used. Current means
the one set by settings.

Moreover, this loaddata command version can override the nasty habit of changing locale to
en-us. By default, it will retain proper locale. To get back to old behaviour, set
MODELTRANSLATION_LOADDATA_RETAIN_LOCALE to False.

Caveats

Accessing Translated Fields Outside Views

Since the modeltranslation mechanism relies on the current language as it
is returned by the get_language function care must be taken when accessing
translated fields outside a view function.

Within a view function the language is set by Django based on a flexible model
described at How Django discovers language preference [https://docs.djangoproject.com/en/dev/topics/i18n/translation/#how-django-discovers-language-preference] which is normally used
only by Django’s static translation system.

When a translated field is accessed in a view function or in a template, it
uses the django.utils.translation.get_language function to determine the
current language and return the appropriate value.

Outside a view (or a template), i.e. in normal Python code, a call to the
get_language function still returns a value, but it might not what you
expect. Since no request is involved, Django’s machinery for discovering the
user’s preferred language is not activated. For this reason modeltranslation
adds a thin wrapper around the function which guarantees that the returned
language is listed in the LANGUAGES setting.

The unittests use the django.utils.translation.trans_real functions to
activate and deactive a specific language outside a view function.

How to Contribute

There are various ways how you can contribute to the project.

Contributing Code

The preferred way for code contributions are pull requests at Github [https://github.com/deschler/django-modeltranslation], usually
created against master.

Note

In order to be properly blamed for a contribution, please verify that the
email you commit with is connected to your Github account (see
help.github.com [https://help.github.com/articles/why-are-my-commits-linked-to-the-wrong-user] for details).

Coding Style

Please make sure that your code follows the PEP 8 [http://www.python.org/dev/peps/pep-0008/] style guide. The only
exception we make is to allow a maximum line length of 100. Furthermore
your code has to validate against pyflakes [https://pypi.python.org/pypi/pyflakes]. It is recommended to use
flake8 [https://pypi.python.org/pypi/flake8] which combines all the checks:

$ flake8 --max-line-length=100 modeltranslation

The #NOQA mark added by flake8 [https://pypi.python.org/pypi/flake8] should be used sparsely.

Django and Python Versions

We always try to support at least the two latest major versions of Django,
as well as Django’s development version. While we can not guarantee the latter
to be supported in early development stages of a new Django version, we aim
to achieve support once it has seen its first release candidate.

The supported Python versions can be derived from the supported Django versions.
Example where we support Python 2.5, 2.6 and 2.7:

	Django 1.3 (old stable) supports Python 2.5, 2.6, 2.7

	Django 1.4 (current stable) supports Python 2.5, 2.6, 2.7

	Django 1.5 (dev) supports Python 2.6, 2.7

Python 3 is currently not supported, but should be added no later than it becomes
officially supported by Django.

Unittests

Modeltranslation has a comprehensive test suite. A test runner is provided which
allows to run the tests outside of a Django project:

$ python runtests.py

Non trivial changes and new features should always be accompanied by a unittest.
Pull requests which add unittests for uncovered code or rare edge cases are also
appreciated.

Continuous Integration

The project uses Travis CI [https://travis-ci.org/deschler/django-modeltranslation] for continuous integration tests. Hooks provided
by Github are active, so that each push and pull request is automatically run
against our Travis CI config [https://github.com/deschler/django-modeltranslation/blob/master/.travis.yml].

Contributing Documentation

Documentation is a crucial part of any open source project. We try to make
it as useful as possible for both, new and experienced developers. If you
feel that something is unclear or lacking, your help to improve it is highly
appreciated.

Even if you don’t feel comfortable enough to document modeltranslation’s usage
or internals, you still have a chance to contribute. None of the core
committers is a native english speaker and bad grammar or misspellings happen.
If you find any of these kind or just simple typos, nobody will feel offended
for getting an English lesson.

The documentation is written using reStructuredText [http://docutils.sourceforge.net/rst.html] and Sphinx [http://sphinx-doc.org/]. You
should try to keep a maximum line length of 80 characters. Unlike for code
contribution this isn’t a forced rule and easily exceeded by something like a
long url.

Using the Issue Tracker

When you have found a bug or want to request a new feature for modeltranslation,
please create a ticket using the project’s issue tracker [https://github.com/deschler/django-modeltranslation/issues]. Your report should
include as many details as possible, like a traceback in case you get one.

Please do not use the issue tracker for general questions, we run a dedicated
mailing list [http://groups.google.com/group/django-modeltranslation] for this.

Related Projects

Note

This list is horribly outdated and only covers apps that where
available when modeltranslation was initially developed. A more
complete list can be found at djangopackages.com [http://www.djangopackages.com/grids/g/model-translation/].

django-multilingual [http://code.google.com/p/django-multilingual/]

A library providing support for multilingual content in Django models.

It is not possible to reuse existing models without modifying them.

django-multilingual-model [http://code.google.com/p/django-multilingual-model/]

A much simpler version of the above django-multilingual.

It works very similiar to the django-multilingual approach.

transdb

Django’s field that stores labels in more than one language in database.

This approach uses a specialized Field class, which means one has to change
existing models.

i18ndynamic [http://code.google.com/p/i18ndynamic/]

This approach is not developed any more.

django-pluggable-model-i18n [http://code.google.com/p/django-pluggable-model-i18n/]

This app utilizes a new approach to multilingual models based on the same
concept the new admin interface uses. A translation for an existing model
can be added by registering a translation class for that model.

This is more or less what modeltranslation does, unfortunately it is far
from being finished.

ChangeLog

v0.7.3
======
Date: 2014-01-05

 ADDED: Documentation for TranslationOptions fields reference and
 south/sync_translation_fields.

 FIXED: Some python3 compatibility issues.
 (thanks Jacek Tomaszewski,
 resolves issue #220)
 FIXED: Clearing translated FileFields does not work with easy_thumbnails.
 (thanks Jacek Tomaszewski,
 resolves issue #219)
 FIXED: Compatibility with nested inlines.
 (thanks abstraktor,
 resolves issue #218)
 FIXED: Admin inlines recursion problem in Django 1.6.
 (thanks Oleg Prans,
 resolves issue #214)
 FIXED: Empty FileField handling.
 (thanks Jacek Tomaszewski,
 resolves issue #215)

v0.7.2
======
Date: 2013-11-11

 ADDED: Documentation about empty_values.
 (thanks Jacek Tomaszewski,
 resolves issue #211)

 FIXED: Proxy model handling.
 (thanks Jacek Tomaszewsk)
 FIXED: Abstract managers patching.
 (thanks Jacek Tomaszewski,
 resolves issue #212)

v0.7.1
======
Date: 2013-11-07
Packaged from revision f7c7ea174344f3dc0cf56ac3bf6e92878ed6baea

 ADDED: Configurable formfields. The ultimate approach to nullable CharFields.
 (thanks Jacek Tomaszewski,
 resolves issue #211, ref #163, #187)

 FIXED: Recursion problem with fieldset handling in Django 1.6.
 (thanks to Bas Peschier,
 resolves issue #214)

v0.7
====
Date: 2013-10-19
Packaged from revision 89f5e6712aaf5d5ec7e2d61940dc1a71fb08ca94

 ADDED: A setting to control which language are slug fields based on
 (thanks to Konrad Wojas,
 resolves issue #194)
 ADDED: A noinput option to the sync_translation_fields management command.
 (thanks to cuchac,
 resolves issues #179 and #184)
 ADDED: Support for Python 3.2 and 3.3.
 (thanks to Karol Fuksiewicz,
 resolves issue #174)
 ADDED: Convenient admin classes which already contain proper Media
 definitions.
 (resolves issue #171)
 ADDED: Only, defer, values, values_list, dates, raw_values methods to
 MultilingualManager.
 (resolves issue #166 adn #173)
 ADDED: Support for ForeignKey and OneToOneField.
 (thanks to Braden MacDonald and Jacek Tomaszewski,
 resolves issue #161)
 ADDED: An auto-population option to the loaddata command.
 (resolves issue #160)
 ADDED: A MODELTRANSLATION_LOADDATA_RETAIN_LOCALE setting for loaddata
 command to leave locale alone.
 (resolves issue #151)

 FIXED: Compatibility with Django 1.6 development version.
 (resolves issue #169)
 FIXED: Handling of 3rd party apps' ModelForms.
 (resolves issue #167)
 FIXED: Triggering field fallback on its default value rather than empty
 string only. Also enhance nullable fields in forms with proper
 widgets to preserve ``None``.
 (thanks to Wojtek Ruszczewski,
 resolves issue #163)
 FIXED: Admin prepopulated_fields is now handled properly.
 (thanks to Rafleze,
 resolves issue #181 and #190)
 FIXED: Form saving when translated field is excluded (e.g. in admin)
 (resolves issue #183)
 FIXED: Multilingual clones are Multilingual too.
 (resolved issue #189)

CHANGED: Every model's manager is patched as MultiLingual, not only objects.
 (resolved issue #198)
CHANGED: Display "make null" checkboxes in model forms.
CHANGED: MODELTRANSLATION_DEBUG setting defaults to False instead of
 settings.DEBUG.
CHANGED: Drop support for Python 2.5 and Django 1.3.

v0.6.1
======
Date: 2013-03-17
Packaged from revision fc8a3034897b8b818c74f41c43a92001e536d970

 FIXED: Joined query does not use translated fields.
 (resolves issue #162)

v0.6
====
Date: 2013-03-01
Packaged from revision ea0e2db68900371146d39dcdf88b29091ee5222f

 ADDED: A new ENABLE_FALLBACKS setting and a context manager for switching
 fallbacks temporarily.
 (thanks to Wojtek Ruszczewski,
 resolves issue #152)
 ADDED: Major refactoring of the tabbed translation fields javascript. Adds
 support for tabular inlines and includes proper handling of stacked
 inlines, which have never been officially supported, but were not
 actively prevented from being tabbified.
 (resolves issue #66)
 ADDED: New group_fieldsets option for TranslationAdmin. When activated
 translation fields and untranslated fields are automatically
 grouped into fieldsets.
 (based on original implementation by Chris Adams,
 resolves issues #38)

 FIXED: Tests to run properly in the scope of a Django project.
 (thanks to Wojtek Ruszczewski,
 resolves issue #153)
 FIXED: Broken tab activation when using jquery-ui 1.10, keeping support for
 older jquery-ui versions and the jquery version shipped by Django.
 (thanks to Dominique Lederer,
 resolves issue #146)
 FIXED: Wrong admin field css class for en-us language.
 (resolves issue #141)
 FIXED: Added missing hook for admin readonly_fields.
 (resolves issue #140)
 FIXED: Keys used in tabbed translation fields to group translations are not
 unique for inlines.
 (resolves issue #121)
 FIXED: The prepopulated_fields TranslationAdmin option only works on the
 first defined field to prepopulate from and made the option aware
 of the current language.
 (resolves issue #57)

CHANGED: Removed deprecated MODELTRANSLATION_TRANSLATION_REGISTRY setting.
CHANGED: Refactored auto population manager functionality. Switched to a
 populate method in favour of the old _populate keyword and added a new
 contextmanager to switch the population mode on demand.
 (thanks to Wojtek Ruszczewski,
 resolves issue #145)
CHANGED: Major refactoring of translation field inheritance and
 TranslationOptions.
 (thanks to Wojtek Ruszczewski,
 resolves issues #50 and #136)

v0.5
====
Date: 2013-02-10
Packaged from revision bedd18ea9e338b133d06f2ed5e7ebfc2e21fd276

 ADDED: Merged autodiscover tests from django-modeltranslation-wrapper.
 ADDED: Rewrite method to MultilingualManager and optimized create.

 FIXED: grouped_translations are computed twice in tabbed translations.
 (thanks to Wojtek Ruszczewski,
 resolves issue #135)
 FIXED: CSS classes in tabbed translation fields when fieldname has a leading
 underscore.
 (thanks to Wojtek Ruszczewski,
 resolves issue #134)
 FIXED: Rewriting of descending ('-' prefixed) ordering fields in
 MultilingualManager.
 (thanks to Wojtek Ruszczewski,
 resolves issue #133)
 FIXED: Download url in setup.py.
 (thanks to Benoît Bryon,
 resolves issue #130)
 FIXED: The update_translation_fields management command does nothing.
 (resolves issue #123)
 FIXED: MultilingualQuerySet custom inheritance.

CHANGED: Don't raise an exception if TranslationField is accessed via class
 to allow descriptor introspection.
 (resolves issue #131)

v0.5b1
======
Date: 2013-01-07
Packaged from revision da928dd431fcf112e2e9c4c154c5b69e7dadc3b3.

 ADDED: Possibility to turn off query rewriting in MultilingualManager.
 (thanks to Jacek Tomaszewski)

 FIXED: Fixed update_translation_fields management command.
 (thanks to Jacek Tomaszewski,
 resolves issues #123 and #124)

CHANGED: Major test refactoring.
 (thanks to Jacek Tomaszewski,
 resolves issues #100 and #119)

v0.5a1
======
Date: 2012-12-05
Packaged from revision da4aeba0ea20ddbee67aa49bc90af507997ac386.

 ADDED: Increased the number of supported fields. Essentially all Django
 model fields and subclasses of them should work, except related
 fields (ForeignKey, ManyToManyField, OneToOneField) and AutoField
 which are not supported.
 ADDED: A subclass of TranslationOptions inherits fields from its bases.
 (thanks to Bruno Tavares and Jacek Tomaszewski,
 resolves issue #110)
 ADDED: Support for fallback languages. Allows fine grained configuration
 through project settings and TranslationOptions on model basis.
 (thanks to Jacek Tomaszewski,
 resolves issue #104)
 ADDED: Multilingual manager which is aware of the current language.
 (thanks to Jacek Tomaszewski,
 resolves issues #45, #78 and #84)

CHANGED: Version code to use a PEP386 compliant version number.
CHANGED: Constructor rewrites fields to be language aware.
 (thanks to Jacek Tomaszewski,
 resolves issues #33 and #58)

 FIXED: Lacking support for readonly_fields in TranslationAdmin.
 (thanks to sbrandtb,
 resolves issue #111)
 FIXED: Model's db_column option is not applied to the translation field.
 (resolves issue #83)
 FIXED: Admin prevents saving a cleared field. The fix deactivates rule3 and
 implies the new language aware manager and constructor rewrite.
 (resolves issue #85)

v0.4.1
======
Date: 2012-11-13
Packaged from revision d9bf9709e9647fb2af51fc559bbe356010bd51ca.

 FIXED: Pypi wants to install beta version. Happened because pypi treats
 0.4.0-beta2 as latest release. This also effectively resulted in a
 downgrade when using 'pip --upgrade' and 0.4.0 was already installed.
 (thanks to jmagnusson for the report,
 resolves issue #103)

v0.4.0
======
Date: 2012-11-11
Packaged from revision c44f9cfee59f1b440f022422f917f247e16bbc6b.

CHANGED: Refactored tests to allow test runs with other apps. Includes a
 "backport" of override_settings to ensure Django 1.3 support.
 (thanks to Jacek Tomaszewski)
CHANGED: Modeltranslation related css class prefix to 'mt'.

 FIXED: Race condition during initialization.
 (resolves issue #91)
 FIXED: Tabs don't properly support two-part language codes.
 (resolves issue #63)

v0.4.0-beta2
============
Date: 2012-10-17
Packaged from revision 7b8cafbde7b14afc8e85235e9b087889a6bfa86e.

 FIXED: Release doesn't include rst files.

v0.4.0-beta1
============
Date: 2012-10-17
Packaged from revision 09a0c4434a676c6fd753e6dcde95056c424db62e.

CHANGED: Refactored documentation using sphinx.
 (resolves issue #81)

 FIXED: Setting MODELTRANSLATION_TRANSLATION_FILES should be optional.
 (resolves issue #86)

v0.4.0-alpha1
=============
Date: 2012-10-12
Packaged from revision 170.

 ADDED: Support for FileField and ImageField.
 (thanks to Bruno Tavares,
 resolves issue #30)
 ADDED: New management command sync_database_fields to sync the database after
 a new model has been registered or a new language has been added.
 (thanks to Sébastien Fievet and the authors of django-transmeta,
 resolves issue #62)

CHANGED: Excluded tabular inlines from jQuery tabs, as they are currently
 not supported.
CHANGED: Use app-level translation files in favour of a single project-level
 one. Adds an autoregister feature similiar to the one provided by
 Django's admin. A new setting MODELTRANSLATION_TRANSLATION_FILES keeps
 backwards compatibility with older versions. See documentation for
 details. This is basically a merge from both
 django-modeltranslation-wrapper and hyperweek's branch at github.
 (thanks to Jacek Tomaszewski, Sébastien Fievet and Maxime Haineault,
 resolves issues #19, #58 and #71)
CHANGED: Moved tests to separate folder and added tests for TranslationAdmin.
 To run the tests the settings provided in model.tests.modeltranslation
 have to be used (settings.LANGUAGES override doesn't work for
 TranslationAdmin).
CHANGED: Major refactoring of the admin integration. Subclassed BaseModelAdmin
 and InlineModelAdmin. Patching options in init doesn't seem to be
 thread safe. Instead used provided hooks like get_form, get_formset
 and get_fieldsets. This should resolve several problems with the
 exclude and fieldsets options and properly support options in inlines.
 (resolves issue #72)

 FIXED: Non-unicode verbose field names showing up empty in forms.
 (resolves issue #35)
 FIXED: Dynamic TranslationOptions model name.
 FIXED: Widgets for translated fields are not properly copied from original
 fields.
 (thanks to boris-chervenkov, resolves issue #74)
 FIXED: Removed XMLField test which is deprecated since Django 1.3 and
 broke tests in Django 1.4.
 (resolves issue #75)

v0.3.3
======
Date: 2012-02-23
Packaged from revision 129.

CHANGED: jQuery search path in tabbed_translation_fields.js. This allows use of
 a version of jQuery other than the one provided by Django. Users who
 want to force the use of Django's jQuery can include force_jquery.js.

 FIXED: Another attempt to include static files during installation.
 (resolves reopened issue #61)

v0.3.2
======
Date: 2011-06-16
Packaged from revision 122.

 FIXED: Static files not included during installation.
 (resolves issue #61)

v0.3.1
======
Date: 2011-06-07
Packaged from revision 121.

CHANGED: Renamed media folder to static.

v0.3
====
Date: 2011-06-03
Packaged from revision 113.

 ADDED: Support for multi-table inheritance.
 (thanks to Sébastien Fievet, resolves issues #50 and #51)
 ADDED: Jquery-ui based admin support for tabbed translation fields.
 (thanks to jaap and adamsc, resolves issue #39)
 ADDED: CSS class to identify a translation field and the default translation
 field in admin.
 (thanks to jaap)
 ADDED: Configurable default value per field instance.
 (thanks to bmihelac, resolves issue #28)
 ADDED: Setting to override the default language.
 (thanks to jaap, resolves issue #2)

CHANGED: Improved performance of update_translation_fields command.
 (thanks to adamsc, resolves issue #43)
CHANGED: Factored out settings into a separate settings.py and consistently
 used an app specific settings prefix.
CHANGED: Refactored creation of translation fields and added handling of
 supported fields.
 (resolves issue #37)

 FIXED: Clearing the default translation field in admin does not clear the
 original field.
 (resolves issue #47)
 FIXED: In some setups appears "This field is required" error for the
 original field.
 (resolves issue #5)
 FIXED: Translations are not saved for tinymce HTMLField when using jquery
 tabs.
 (thanks to kottenator, resolves issue #41)
 FIXED: Fieldname isn't ensured to be string.
 (resolves issue #41)
 FIXED: Kept backwards compatibility with Django-1.0.
 (thanks to jaap, resolves issue #34)
 FIXED: Regression in south_field_triple caused by r55.
 (thanks to jaap, resolves issue #29)
 FIXED: TranslationField pre_save does not get the default language
 correctly.
 (thanks to jaap, resolves issue #31)

v0.2
====
Date: 2010-06-15
Packaged from revision 57.

 ADDED: Support for admin prepopulated_fields.
 (resolves issue #21)
 ADDED: Support for admin list_editable.
 (thanks carl.j.meyer, resolves issue #20)
 ADDED: Preserve the formfield widget of the translated field.
 (thanks piquadrat)
 ADDED: Initial support for django-south.
 (thanks andrewgodwin, resolves issue #11)
 ADDED: Support for admin inlines, common and generic.
 (resolves issue #12 and issue #18)

 FIXED: Admin form validation errors with empty translated values and
 unique=True.
 (thanks to adamsc, resolves issue #26)
 FIXED: Mangling of untranslated prepopulated fields.
 (thanks to carl.j.meyer, resolves issue #25)
 FIXED: Verbose names of translated fields are not translated.
 (thanks to carl.j.meyer, resolves issue #24)
 FIXED: Race condition between model import and translation registration in
 production by ensuring that models are registered for translation
 before TranslationAdmin runs.
 (thanks to carl.j.meyer, resolves issue #19)
 FIXED: Added workaround for swallowed ImportErrors by printing a traceback
 explicitly.
 (resolves issue #17)
 FIXED: Only print debug statements to stdout if the runserver or
 runserver_plus management commands are used.
 (resolves issue #16)
 FIXED: Removed print statements so that modeltranslation is usable with
 mod_wsgi.
 (resolves issue #7)
 FIXED: Broken admin fields and fieldsets.
 (thanks simoncelen, resolves issue #9)
 FIXED: Creation of db fields with invalid python language code.
 (resolves issue #4)
 FIXED: Tests to run from any project.
 (thanks carl.j.meyer, resolves issue #6)
 FIXED: Removed unused dependency to content type which can break syncdb.
 (thanks carl.j.meyer, resolves issue #1)

v0.1
====
Date: 2009-02-22
Initial release packaged from revision 19.

Index

 E
 | F

E

 	
 	empty_values (TranslationOptions attribute)

F

 	
 	fallback_languages (TranslationOptions attribute)

 	fallback_undefined (TranslationOptions attribute)

 	
 	fallback_values (TranslationOptions attribute)

 	fields (TranslationOptions attribute)

Modeltranslation

The modeltranslation application can be used to translate dynamic content of
existing Django models to an arbitrary number of languages without having to
change the original model classes. It uses a registration approach (comparable
to Django’s admin app) to be able to add translations to existing or new
projects and is fully integrated into the Django admin backend.

The advantage of a registration approach is the ability to add translations to
models on a per-app basis. You can use the same app in different projects,
may they use translations or not, and you never have to touch the original
model class.

[image: https://travis-ci.org/deschler/django-modeltranslation.png?branch=master]
 [https://travis-ci.org/deschler/django-modeltranslation]
Features

	Add translations without changing existing models

	Fast, because translation fields are stored in the same table

	Supports inherited models

	Django admin support

	Unlimited number of target languages

Project Home

https://github.com/deschler/django-modeltranslation

Documentation

https://django-modeltranslation.readthedocs.org/en/latest/

Mailing List

http://groups.google.com/group/django-modeltranslation

Authors

Core Committers

	Peter Eschler <peschler@gmail.com> (retired)

	Dirk Eschler <eschler@gmail.com>

	Jacek Tomaszewski <jacek.tomek@gmail.com>

Contributors

	Carl J. Meyer

	Jaap Roes

	Bojan Mihelac

	Sébastien Fievet

	Bruno Tavares

	Zach Mathew (of django-linguo [https://github.com/zmathew/django-linguo], initial author of MultilingualManager)

	Mihai Sucan

	Benoît Bryon

	Wojtek Ruszczewski

	Chris Adams

	Dominique Lederer

	Braden MacDonald

	Karol Fuksiewicz

	Konrad Wojas

	Bas Peschier

	Oleg Prans

	And many more ... (if you miss your name here, please let us know!)

 _static/up.png

_static/minus.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		Modeltranslation

 		Installation

 		Requirements

 		Using Pip

 		Using the Source

 		Setup

 		Configuration

 		Required Settings

 		INSTALLED_APPS

 		LANGUAGES

 		Advanced Settings

 		MODELTRANSLATION_DEFAULT_LANGUAGE

 		MODELTRANSLATION_FALLBACK_LANGUAGES

 		MODELTRANSLATION_PREPOPULATE_LANGUAGE

 		MODELTRANSLATION_TRANSLATION_FILES

 		MODELTRANSLATION_CUSTOM_FIELDS

 		MODELTRANSLATION_AUTO_POPULATE

 		MODELTRANSLATION_DEBUG

 		MODELTRANSLATION_ENABLE_FALLBACKS

 		MODELTRANSLATION_LOADDATA_RETAIN_LOCALE

 		Registering Models for Translation

 		TranslationOptions fields inheritance

 		Changes Automatically Applied to the Model Class

 		Committing fields to database

 		TranslationOptions attributes reference

 		Supported Fields Matrix

 		Accessing Translated and Translation Fields

 		Rules for Translated Field Access

 		Examples for Translated Field Access

 		Multilingual Manager

 		Auto-population

 		Falling back

 		Fallback languages

 		Fallback values

 		Fallback undefined

 		The State of the Original Field

 		ModelForms

 		Formfields and nullability

 		None-checkbox widget

 		Django Admin Integration

 		Tweaks Applied to the Admin

 		formfield_for_dbfield

 		get_form/get_fieldsets/_declared_fieldsets

 		TranslationAdmin in Combination with Other Admin Classes

 		Admin Classes that Override formfield_for_dbfield

 		Admin Inlines

 		Complex Example with Admin Inlines

 		Using Tabbed Translation Fields

 		Tabbed Translation Fields Admin Classes

 		TranslationAdmin Options

 		TranslationAdmin.group_fieldsets

 		Formfields with None-checkbox

 		Management Commands

 		The update_translation_fields Command

 		The sync_translation_fields Command

 		The loaddata Command

 		Caveats

 		Accessing Translated Fields Outside Views

 		How to Contribute

 		Contributing Code

 		Coding Style

 		Django and Python Versions

 		Unittests

 		Continuous Integration

 		Contributing Documentation

 		Using the Issue Tracker

 		Related Projects

 		django-multilingual

 		django-multilingual-model

 		transdb

 		i18ndynamic

 		django-pluggable-model-i18n

 		ChangeLog

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/comment.png

