
django-modeltranslation
Documentation

Release 0.4.1

Dirk Eschler

May 16, 2016

Contents

1 Features 3
1.1 Project Home . 3
1.2 Documentation . 3
1.3 Mailing List . 3

2 Table of Contents 5
2.1 Installation . 5
2.2 Setup . 5
2.3 Registering Models for Translation . 8
2.4 Accessing Translated and Translation Fields . 9
2.5 Django Admin Integration . 11
2.6 Management Commands . 14
2.7 Caveats . 15
2.8 Related Projects . 16
2.9 Authors . 17
2.10 Contributors . 17

i

ii

django-modeltranslation Documentation, Release 0.4.1

The modeltranslation application can be used to translate dynamic content of existing Django models to an arbitrary
number of languages without having to change the original model classes. It uses a registration approach (comparable
to Django’s admin app) to be able to add translations to existing or new projects and is fully integrated into the Django
admin backend.

The advantage of a registration approach is the ability to add translations to models on a per-app basis. You can use
the same app in different projects, may they use translations or not, and you never have to touch the original model
class.

Contents 1

django-modeltranslation Documentation, Release 0.4.1

2 Contents

CHAPTER 1

Features

• Unlimited number of target languages

• Add translations without changing existing models

• Django admin support

• Supports inherited models

1.1 Project Home

https://github.com/deschler/django-modeltranslation

1.2 Documentation

https://readthedocs.org/projects/django-modeltranslation

1.3 Mailing List

http://groups.google.com/group/django-modeltranslation

3

https://github.com/deschler/django-modeltranslation
https://readthedocs.org/projects/django-modeltranslation
http://groups.google.com/group/django-modeltranslation

django-modeltranslation Documentation, Release 0.4.1

4 Chapter 1. Features

CHAPTER 2

Table of Contents

2.1 Installation

2.1.1 Requirements

Modeltranslation Python Django
>=0.4 2.5 - 2-7 1.3 - 1.4
<=0.3 2.4 - 2.7 1.0 - 1.4

2.1.2 Using Pip

$ pip install django-modeltranslation

2.1.3 Using the Source

Get a source tarball from github or pypi, unpack, then install with:

$ python setup.py install

Note: As an alternative, if you don’t want to mess with any packaging tool, unpack the tarball and copy/move the
modeltranslation directory to a path listed in your PYTHONPATH environment variable.

2.2 Setup

To setup the application please follow these steps. Each step is described in detail in the following sections:

1. Add the modeltranslation app to the INSTALLED_APPS variable of your project’s settings.py.

2. Configure your LANGUAGES in settings.py.

3. Create a translation.py in your app directory and register TranslationOptions for every model you
want to translate.

4. Sync the database using manage.py syncdb (note that this only applies if the models registered in the
translations.py did not have been synced to the database before. If they did - read further down what to
do in that case.

5

https://github.com/deschler/django-modeltranslation/downloads
http://pypi.python.org/pypi/django-modeltranslation/

django-modeltranslation Documentation, Release 0.4.1

2.2.1 Configure the Project’s settings.py

Required Settings

The following variables have to be added to or edited in the project’s settings.py:

INSTALLED_APPS

Make sure that the modeltranslation app is listed in your INSTALLED_APPS variable:

INSTALLED_APPS = (
...
'modeltranslation',
....

)

Note: Also make sure that the app can be found on a path contained in your PYTHONPATH environment variable.

LANGUAGES

The LANGUAGES variable must contain all languages used for translation. The first language is treated as the default
language.

The modeltranslation application uses the list of languages to add localized fields to the models registered for transla-
tion. To use the languages de and en in your project, set the LANGUAGES variable like this (where de is the default
language):

gettext = lambda s: s
LANGUAGES = (

('de', gettext('German')),
('en', gettext('English')),

)

Note: The gettext lambda function is not a feature of modeltranslation, but rather required for Django to be able
to (statically) translate the verbose names of the languages using the standard i18n solution.

Advanced Settings

Modeltranslation also has some advanced settings to customize its behaviour:

MODELTRANSLATION_DEFAULT_LANGUAGE

New in version 0.3.

Default: None

To override the default language as described in LANGUAGES, you can define a language in
MODELTRANSLATION_DEFAULT_LANGUAGE. Note that the value has to be in settings.LANGUAGES,
otherwise an ImproperlyConfigured exception will be raised.

6 Chapter 2. Table of Contents

django-modeltranslation Documentation, Release 0.4.1

Example:

MODELTRANSLATION_DEFAULT_LANGUAGE = 'en'

MODELTRANSLATION_TRANSLATION_FILES

New in version 0.4.

Default: () (empty tuple)

Modeltranslation uses an autoregister feature similiar to the one in Django’s admin. The autoregistration process will
look for a translation.py file in the root directory of each application that is in INSTALLED_APPS.

A setting MODELTRANSLATION_TRANSLATION_FILES is provided to limit or extend the modules that are taken
into account.

Syntax:

MODELTRANSLATION_TRANSLATION_FILES = (
'<APP1_MODULE>.translation',
'<APP2_MODULE>.translation',

)

Example:

MODELTRANSLATION_TRANSLATION_FILES = (
'news.translation',
'projects.translation',

)

Note: Modeltranslation up to version 0.3 used a single project wide registration file which was defined
through MODELTRANSLATION_TRANSLATION_REGISTRY = ’<PROJECT_MODULE>.translation’.
For backwards compatibiliy the module defined through this setting is automatically added to
MODELTRANSLATION_TRANSLATION_FILES. A DeprecationWarning is issued in this case.

MODELTRANSLATION_CUSTOM_FIELDS

Default: () (empty tuple)

New in version 0.3.

Modeltranslation officially supports CharField and TextField.

New in version 0.4.

Support for FileField and ImageField.

In most cases subclasses of the supported fields will work fine, too. Other fields aren’t supported and will throw an
ImproperlyConfigured exception.

The list of supported fields can be extended by defining a tuple of field names in your settings.py.

Example:

MODELTRANSLATION_CUSTOM_FIELDS = ('MyField', 'MyOtherField',)

2.2. Setup 7

django-modeltranslation Documentation, Release 0.4.1

Warning: This just prevents modeltranslation from throwing an ImproperlyConfigured exception. Any
non text-like field will most likely fail in one way or another. The feature is considered experimental and might be
replaced by a more sophisticated mechanism in future versions.

MODELTRANSLATION_DEBUG

Default: settings.DEBUG

New in version 0.4.

Used for modeltranslation related debug output. Currently setting it to False will just prevent Django’s development
server from printing the Registered xx models for translation message to stdout.

2.3 Registering Models for Translation

The modeltranslation app can translate CharField and TextField based fields (as well as FileField
and ImageField as of version 0.4) of any model class. For each model to translate a translation option class
containing the fields to translate is registered with the modeltranslation app.

Registering models and their fields for translation requires the following steps:

1. Create a translation.py in your app directory.

2. Create a translation option class for every model to translate.

3. Register the model and the translation option class at the modeltranslation.translator.translator

The modeltranslation application reads the translation.py file in your app directory thereby triggering the reg-
istration of the translation options found in the file.

A translation option is a class that declares which fields of a model to translate. The class must derive from
modeltranslation.ModelTranslation and it must provide a fields attribute storing the list of field-
names. The option class must be registered with the modeltranslation.translator.translator in-
stance.

To illustrate this let’s have a look at a simple example using a News model. The news in this example only contains a
title and a text field. Instead of a news, this could be any Django model class:

class News(models.Model):
title = models.CharField(max_length=255)
text = models.TextField()

In order to tell the modeltranslation app to translate the title and text field, create a translation.py file in
your news app directory and add the following:

from modeltranslation.translator import translator, TranslationOptions
from news.models import News

class NewsTranslationOptions(TranslationOptions):
fields = ('title', 'text',)

translator.register(News, NewsTranslationOptions)

Note that this does not require to change the News model in any way, it’s only imported. The
NewsTranslationOptions derives from TranslationOptions and provides the fields attribute. Finally
the model and its translation options are registered at the translator object.

8 Chapter 2. Table of Contents

django-modeltranslation Documentation, Release 0.4.1

At this point you are mostly done and the model classes registered for translation will have been added some auto-
magical fields. The next section explains how things are working under the hood.

2.3.1 Changes Automatically Applied to the Model Class

After registering the News model for translation an SQL dump of the news app will look like this:

$./manage.py sqlall news
BEGIN;
CREATE TABLE `news_news` (

`id` integer AUTO_INCREMENT NOT NULL PRIMARY KEY,
`title` varchar(255) NOT NULL,
`title_de` varchar(255) NULL,
`title_en` varchar(255) NULL,
`text` longtext NULL,
`text_de` longtext NULL,
`text_en` longtext NULL,

)
;
ALTER TABLE `news_news` ADD CONSTRAINT page_id_refs_id_3edd1f0d FOREIGN KEY (`page_id`) REFERENCES `page_page` (`id`);
CREATE INDEX `news_news_page_id` ON `news_news` (`page_id`);
COMMIT;

Note the title_de, title_en, text_de and text_en fields which are not declared in the original News model
class but rather have been added by the modeltranslation app. These are called translation fields. There will be one
for every language in your project’s settings.py.

The name of these additional fields is build using the original name of the translated field and appending one of the
language identifiers found in the settings.LANGUAGES.

As these fields are added to the registered model class as fully valid Django model fields, they will appear in the db
schema for the model although it has not been specified on the model explicitly.

If you are starting a fresh project and have considered your translation needs in the beginning then simply sync your
database and you are ready to use the translated models.

In case you are translating an existing project and your models have already been synced to the database you
will need to alter the tables in your database and add these additional translation fields. Note that all added
fields are declared null=True not matter if the original field is required. In other words - all translations are
optional. To populate the default translation fields added by the modeltranslation application you can use the
update_translation_fields command below. See The update_translation_fields Command section for more
infos on this.

2.4 Accessing Translated and Translation Fields

The modeltranslation app changes the behaviour of the translated fields. To explain this consider the news example
from the Registering Models for Translation chapter again. The original News model looked like this:

class News(models.Model):
title = models.CharField(max_length=255)
text = models.TextField()

Now that it is registered with the modeltranslation app the model looks like this - note the additional fields automati-
cally added by the app:

2.4. Accessing Translated and Translation Fields 9

django-modeltranslation Documentation, Release 0.4.1

class News(models.Model):
title = models.CharField(max_length=255) # original/translated field
title_de = models.CharField(null=True, blank=True, max_length=255) # default translation field
title_en = models.CharField(null=True, blank=True, max_length=255) # translation field
text = models.TextField() # original/translated field
text_de = models.TextField(null=True, blank=True) # default translation field
text_en = models.TextField(null=True, blank=True) # translation field

The example above assumes that the default language is de, therefore the title_de and text_de fields are marked
as the default translation fields. If the default language is en, the title_en and text_en fields would be the default
translation fields.

2.4.1 Rules for Translated Field Access

So now when it comes to setting and getting the value of the original and the translation fields the following rules
apply:

Rule 1

Reading the value from the original field returns the value translated to the current language.

Rule 2

Assigning a value to the original field also updates the value in the associated default translation field.

Rule 3

Assigning a value to the default translation field also updates the original field - note that the value of the
original field will not be updated until the model instance is saved.

Rule 4

If both fields - the original and the default translation field - are updated at the same time, the default
translation field wins.

2.4.2 Examples for Translated Field Access

Because the whole point of using the modeltranslation app is translating dynamic content, the fields marked for trans-
lation are somehow special when it comes to accessing them. The value returned by a translated field is depending on
the current language setting. “Language setting” is referring to the Django set_language view and the corresponding
get_lang function.

Assuming the current language is de in the News example from above, the translated title field will return the
value from the title_de field:

Assuming the current language is "de"
n = News.objects.all()[0]
t = n.title # returns german translation

Assuming the current language is "en"
t = n.title # returns english translation

This feature is implemented using Python descriptors making it happen without the need to touch the original model
classes in any way. The descriptor uses the django.utils.i18n.get_language function to determine the
current language.

10 Chapter 2. Table of Contents

https://docs.djangoproject.com/en/dev/topics/i18n/translation/#set-language-redirect-view

django-modeltranslation Documentation, Release 0.4.1

2.5 Django Admin Integration

In order to be able to edit the translations via the django.contrib.admin application you need
to register a special admin class for the translated models. The admin class must derive from
modeltranslation.admin.TranslationAdmin which does some funky patching on all your models regis-
tered for translation. Taken the news example the most simple case would look like:

from django.contrib import admin
from news.models import News
from modeltranslation.admin import TranslationAdmin

class NewsAdmin(TranslationAdmin):
pass

admin.site.register(News, NewsAdmin)

2.5.1 Tweaks Applied to the Admin

formfield_for_dbfield

The TranslationBaseModelAdmin class, which TranslationAdmin and all inline related classes in
modeltranslation derive from, implements a special method which is def formfield_for_dbfield(self,
db_field, **kwargs). This method does the following:

1. Copies the widget of the original field to each of it’s translation fields.

2. Checks if the original field was required and if so makes the default translation field required instead.

get_form/get_fieldsets/_declared_fieldsets

In addition the TranslationBaseModelAdmin class overrides get_form, get_fieldsets and
_declared_fieldsets to make the options fields, exclude and fieldsets work in a transparent way. It
basically does:

1. Removes the original field from every admin form by adding it to exclude under the hood.

2. Replaces the - now removed - orginal fields with their corresponding translation fields.

Taken the fieldsets option as an example, where the title field is registered for translation but not the news
field:

class NewsAdmin(TranslationAdmin):
fieldsets = [

(u'News', {'fields': ('title', 'news',)})
]

In this case get_fieldsets will return a patched fieldset which contains the translation fields of title, but not
the original field:

>>> a = NewsAdmin(NewsModel, site)
>>> a.get_fieldsets(request)
[(u'News', {'fields': ('title_de', 'title_en', 'news',)})]

2.5. Django Admin Integration 11

django-modeltranslation Documentation, Release 0.4.1

2.5.2 TranslationAdmin in Combination with Other Admin Classes

If there already exists a custom admin class for a translated model and you don’t want or can’t edit that class directly
there is another solution.

Taken a (fictional) reusable blog app which defines a model Entry and a corresponding admin class called
EntryAdmin. This app is not yours and you don’t want to touch it at all.

In the most common case you simply make use of Python’s support for multiple inheritance like this:

class MyTranslatedEntryAdmin(EntryAdmin, TranslationAdmin):
pass

The class is then registered for the admin.site (not to be confused with modeltranslation’s translator). If
EntryAdmin is already registered through the blog app, it has to be unregistered first:

admin.site.unregister(Entry)
admin.site.register(Entry, MyTranslatedEntryAdmin)

Admin Classes that Override formfield_for_dbfield

In a more complex setup the original EntryAdmin might override formfield_for_dbfield itself:

class EntryAdmin(model.Admin):
def formfield_for_dbfield(self, db_field, **kwargs):

does some funky stuff with the formfield here

Unfortunately the first example won’t work anymore because Python can only execute one of the
formfield_for_dbfield methods. Since both admin classes implement this method Python must make a deci-
sion and it chooses the first class EntryAdmin. The functionality from TranslationAdmin will not be executed
and translation in the admin will not work for this class.

But don’t panic, here’s a solution:

class MyTranslatedEntryAdmin(EntryAdmin, TranslationAdmin):
def formfield_for_dbfield(self, db_field, **kwargs):

field = super(MyTranslatedEntryAdmin, self).formfield_for_dbfield(db_field, **kwargs)
self.patch_translation_field(db_field, field, **kwargs)
return field

This implements the formfield_for_dbfield such that both functionalities will be executed. The first line
calls the superclass method which in this case will be the one of EntryAdmin because it is the first class inherited
from. The TranslationAdmin capsulates its functionality in the patch_translation_field method and
the formfield_for_dbfield implementation of the TranslationAdmin class simply calls it. You can copy
this behaviour by calling it from a custom admin class and that’s done in the example above. After that the field is
fully patched for translation and finally returned.

2.5.3 Admin Inlines

New in version 0.2.

Support for tabular and stacked inlines, common and generic ones.

A translated inline must derive from one of the following classes:

• modeltranslation.admin.TranslationTabularInline

• modeltranslation.admin.TranslationStackedInline

12 Chapter 2. Table of Contents

django-modeltranslation Documentation, Release 0.4.1

• modeltranslation.admin.TranslationGenericTabularInline

• modeltranslation.admin.TranslationGenericStackedInline

Just like TranslationAdmin these classes implement a special method formfield_for_dbfieldwhich does
all the patching.

For our example we assume that there is new model called Image. Its definition is left out for simplicity. Our News
model inlines the new model:

from django.contrib import admin
from news.models import Image, News
from modeltranslation.admin import TranslationTabularInline

class ImageInline(TranslationTabularInline):
model = Image

class NewsAdmin(admin.ModelAdmin):
list_display = ('title',)
inlines = [ImageInline,]

admin.site.register(News, NewsAdmin)

Note: In this example only the Image model is registered in translation.py. It’s not a requirement that
NewsAdmin derives from TranslationAdmin in order to inline a model which is registered for translation.

Complex Example with Admin Inlines

In this more complex example we assume that the News and Image models are registered in translation.py.
The News model has an own custom admin class called NewsAdmin and the Image model an own
generic stacked inline class called ImageInline. Furthermore we assume that NewsAdmin overrides
formfield_for_dbfield itself and the admin class is already registered through the news app.

Note: The example uses the technique described in TranslationAdmin in combination with other admin classes.

Bringing it all together our code might look like this:

from django.contrib import admin
from news.admin import ImageInline
from news.models import Image, News
from modeltranslation.admin import TranslationAdmin, TranslationGenericStackedInline

class TranslatedImageInline(ImageInline, TranslationGenericStackedInline):
model = Image

class TranslatedNewsAdmin(NewsAdmin, TranslationAdmin):
inlines = [TranslatedImageInline,]

def formfield_for_dbfield(self, db_field, **kwargs):
field = super(TranslatedNewsAdmin, self).formfield_for_dbfield(db_field, **kwargs)
self.patch_translation_field(db_field, field, **kwargs)
return field

admin.site.unregister(News)
admin.site.register(News, NewsAdmin)

2.5. Django Admin Integration 13

django-modeltranslation Documentation, Release 0.4.1

2.5.4 Using Tabbed Translation Fields

New in version 0.3.

Modeltranslation supports separation of translation fields via jquery-ui tabs. The proposed way to include it is through
the inner Media class of a TranslationAdmin class like this:

class NewsAdmin(TranslationAdmin):
class Media:

js = (
'modeltranslation/js/force_jquery.js',
'http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.24/jquery-ui.min.js',
'modeltranslation/js/tabbed_translation_fields.js',

)
css = {

'screen': ('modeltranslation/css/tabbed_translation_fields.css',),
}

The force_jquery.js script is necessary when using Django’s built-in django.jQuery object. Otherwise the
normal jQuery object won’t be available to the included (non-namespaced) jquery-ui library.

Standard jquery-ui theming can be used to customize the look of tabs, the provided css file is supposed to work well
with a default Django admin.

Note: This is just an example and might have to be adopted to your setup.

2.5.5 Using a Custom jQuery Library

If you don’t want to use the jquery library shipped with Django, you can also include a standard one. While this adds
some redundancy it could be useful in situations where you need certain features from a newer version of jquery that
is not yet included in Django or you rely on a non-namespaced version of jquery somewhere in your custom admin
frontend code or included plugins.

In this case you don’t need the force_jquery.js static provided by modeltranslation but include the standard
jquery library before jquery-ui like this:

class NewsAdmin(TranslationAdmin):
class Media:

js = (
'http://code.jquery.com/jquery-1.8.2.min.js',
'http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.24/jquery-ui.min.js',
'modeltranslation/js/tabbed_translation_fields.js',

)
css = {

'screen': ('modeltranslation/css/tabbed_translation_fields.css',),
}

2.6 Management Commands

2.6.1 The update_translation_fields Command

In case the modeltranslation app was installed on an existing project and you have specified to translate fields of models
which are already synced to the database, you have to update your database schema manually.

14 Chapter 2. Table of Contents

django-modeltranslation Documentation, Release 0.4.1

Unfortunately the newly added translation fields on the model will be empty then, and your templates will show the
translated value of the fields (see Rule 1 below) which will be empty in this case. To correctly initialize the default
translation field you can use the update_translation_fields command:

$./manage.py update_translation_fields

Taken the News example from above this command will copy the value from the news object’s title field to the
default translation field title_de. It only does so if the default translation field is empty otherwise nothing is copied.

Note: The command will examine your settings.LANGUAGES variable and the first language declared there will
be used as the default language.

All translated models (as specified in the project’s translation.py will be populated with initial data.

2.6.2 The sync_translation_fields Command

New in version 0.4.

$./manage.py sync_translation_fields

Todo

Explain

2.7 Caveats

Consider the following example (assuming the default language is de):

>>> n = News.objects.create(title="foo")
>>> n.title
'foo'
>>> n.title_de
>>>

Because the original field title was specified in the constructor it is directly passed into the instance’s __dict__
and the descriptor which normally updates the associated default translation field (title_de) is not called. Therefor
the call to n.title_de returns an empty value.

Now assign the title, which triggers the descriptor and the default translation field is updated:

>>> n.title = 'foo'
>>> n.title_de
'foo'
>>>

2.7.1 Accessing Translated Fields Outside Views

Since the modeltranslation mechanism relies on the current language as it is returned by the get_language function
care must be taken when accessing translated fields outside a view function.

Within a view function the language is set by Django based on a flexible model described at How Django discovers
language preference which is normally used only by Django’s static translation system.

2.7. Caveats 15

http://docs.djangoproject.com/en/dev/topics/i18n/#id2
http://docs.djangoproject.com/en/dev/topics/i18n/#id2

django-modeltranslation Documentation, Release 0.4.1

When a translated field is accessed in a view function or in a template, it uses the
django.utils.translation.get_language function to determine the current language and return
the appropriate value.

Outside a view (or a template), i.e. in normal Python code, a call to the get_language function still returns a value,
but it might not what you expect. Since no request is involved, Django’s machinery for discovering the user’s preferred
language is not activated.

Todo

Explain more

The unittests in tests.py use the django.utils.translation.trans_real functions to activate and
deactive a specific language outside a view function.

2.8 Related Projects

Note: This list is horribly outdated and only covers apps that where available when modeltranslation was initially
developed. A more complete list can be found at djangopackages.com.

2.8.1 django-multilingual

A library providing support for multilingual content in Django models.

It is not possible to reuse existing models without modifying them.

2.8.2 django-multilingual-model

A much simpler version of the above django-multilingual.

It works very similiar to the django-multilingual approach.

2.8.3 transdb

Django’s field that stores labels in more than one language in database.

This approach uses a specialized Field class, which means one has to change existing models.

2.8.4 i18ndynamic

This approach is not developed any more.

2.8.5 django-pluggable-model-i18n

This app utilizes a new approach to multilingual models based on the same concept the new admin in-
terface uses. A translation for an existing model can be added by registering a translation class for that
model.

16 Chapter 2. Table of Contents

http://www.djangopackages.com/grids/g/model-translation/

django-modeltranslation Documentation, Release 0.4.1

This is more or less what modeltranslation does, unfortunately it is far from being finished.

2.9 Authors

• Peter Eschler <peschler@gmail.com>

• Dirk Eschler <eschler@gmail.com>

2.10 Contributors

• Carl J. Meyer

• Jaap Roes

• Bojan Mihelac

• Sébastien Fievet

• Jacek Tomaszewski

• Bruno Tavares

• And many more ...

2.9. Authors 17

mailto:peschler@gmail.com
mailto:eschler@gmail.com

	Features
	Project Home
	Documentation
	Mailing List

	Table of Contents
	Installation
	Setup
	Registering Models for Translation
	Accessing Translated and Translation Fields
	Django Admin Integration
	Management Commands
	Caveats
	Related Projects
	Authors
	Contributors

