
django-modeltranslation
Documentation

Release dev

Dirk Eschler

Sep 13, 2023

Contents

1 Modeltranslation 3
1.1 Features . 3
1.2 Table of Contents . 4
1.3 Authors . 51

Index 53

i

ii

django-modeltranslation Documentation, Release dev

On February 24th, 2022, Russia invaded Ukraine. I’m sole maintainer of this project staying in safe place, but i don’t
know how long it would be safe.

Russian military shelling our cities, targeting civilian population.

Help Ukraine:

• https://supportukrainenow.org/

Talk to your politics, talk to your friends. Send heavy weapons to Ukraine. Close the sky.

Contents 1

https://supportukrainenow.org/

django-modeltranslation Documentation, Release dev

2 Contents

CHAPTER 1

Modeltranslation

The modeltranslation application is used to translate dynamic content of existing Django models to an arbitrary number
of languages without having to change the original model classes. It uses a registration approach (comparable to
Django’s admin app) to be able to add translations to existing or new projects and is fully integrated into the Django
admin backend.

The advantage of a registration approach is the ability to add translations to models on a per-app basis. You can use
the same app in different projects, may they use translations or not, and you never have to touch the original model
class.

1.1 Features

• Add translations without changing existing models or views

• Translation fields are stored in the same table (no expensive joins)

• Supports inherited models (abstract and multi-table inheritance)

• Handle more than just text fields

• Django admin integration

• Flexible fallbacks, auto-population and more!

For the latest documentation, visit https://django-modeltranslation.readthedocs.io/en/latest/.

3

https://coveralls.io/r/deschler/django-modeltranslation
https://pypi.python.org/pypi/django-modeltranslation/
https://pypi.python.org/pypi/django-modeltranslation/
https://gitter.im/django-modeltranslation/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge
https://django-modeltranslation.readthedocs.io/en/latest/

django-modeltranslation Documentation, Release dev

1.2 Table of Contents

1.2.1 Installation

Requirements

Which Modeltranslation version is required for given Django-Python combination to work?

Python Django
version 1.8 1.9 1.10 1.11 2.0 2.1 2.2 3.0 3.2 4.0 4.1 4.2
2.7 0.9+ 0.11+ 0.12+ 0.13+
3.2 0.9+
3.3 0.9+
3.4 0.9+ 0.11+ 0.12+ 0.13+ 0.13+
3.5 0.9+ 0.11+ 0.12+ 0.13+ 0.13+ 0.13+
3.6 0.13+ 0.13+ 0.13+ 0.15+ 0.15+ 0.17+ 0.17+ 0.17+ 0.18+
3.7 0.13+ 0.13+ 0.15+ 0.15+ 0.17+ 0.17+ 0.17+ 0.18+
3.8 0.13+ 0.13+ 0.15+ 0.15+ 0.17+ 0.17+ 0.17+ 0.18+
3.9 0.13+ 0.13+ 0.15+ 0.15+ 0.17+ 0.17+ 0.17+ 0.18+
3.10 0.13+ 0.13+ 0.15+ 0.15+ 0.17+ 0.17+ 0.17+ 0.18+
3.11 0.13+ 0.13+ 0.15+ 0.15+ 0.17+ 0.17+ 0.17+ 0.18+

(-X denotes “up to version X”, whereas X+ means “from version X upwards”)

Using Pip

$ pip install django-modeltranslation

Using the Source

Get a source tarball from pypi, unpack, then install with:

$ python setup.py install

Note: As an alternative, if you don’t want to mess with any packaging tool, unpack the tarball and copy/move the
modeltranslation directory to a path listed in your PYTHONPATH environment variable.

1.2.2 Setup

To setup the application please follow these steps. Each step is described in detail in the following sections:

1. Add modeltranslation to the INSTALLED_APPS variable of your project’s settings.py.

2. Set USE_I18N = True in settings.py.

3. Configure your LANGUAGES in settings.py.

4. Create a translation.py in your app directory and register TranslationOptions for every model you
want to translate.

4 Chapter 1. Modeltranslation

http://pypi.python.org/pypi/django-modeltranslation/

django-modeltranslation Documentation, Release dev

5. Sync the database using python manage.py makemigrations and python manage.py
migrate.

Note: This only applies if the models registered in translation.py haven’t been synced to the database
before. If they have, please read Committing fields to database.

1.2.3 Configuration

Required Settings

The following variables have to be added to or edited in the project’s settings.py:

INSTALLED_APPS

Make sure that the modeltranslation app is listed in your INSTALLED_APPS variable:

INSTALLED_APPS = (
...
'modeltranslation',
'django.contrib.admin', # optional
....

)

Important: If you want to use the admin integration, modeltranslation must be put before django.
contrib.admin (only applies when using Django 1.7 or above).

Important: If you want to use the django-debug-toolbar together with modeltranslation, use explicit setup.
Otherwise tweak the order of INSTALLED_APPS: try to put debug_toolbar as first entry in INSTALLED_APPS
(in Django < 1.7) or after modeltranslation (in Django >= 1.7). However, only explicit setup is guaranteed to
succeed.

LANGUAGES

The LANGUAGES variable must contain all languages used for translation. The first language is treated as the default
language.

Modeltranslation uses the list of languages to add localized fields to the models registered for translation. To use the
languages de and en in your project, set the LANGUAGES variable like this (where de is the default language):

gettext = lambda s: s
LANGUAGES = (

('de', gettext('German')),
('en', gettext('English')),

)

1.2. Table of Contents 5

http://django-debug-toolbar.readthedocs.org/en/latest/installation.html#explicit-setup

django-modeltranslation Documentation, Release dev

Note: The gettext lambda function is not a feature of modeltranslation, but rather required for Django to be able
to (statically) translate the verbose names of the languages using the standard i18n solution.

Note: If, for some reason, you don’t want to translate objects to exactly the same languages as the site would be
displayed into, you can set MODELTRANSLATION_LANGUAGES (see below). For any language in LANGUAGES
not present in MODELTRANSLATION_LANGUAGES, the default language will be used when accessing translated
content. For any language in MODELTRANSLATION_LANGUAGES not present in LANGUAGES, probably nobody
will see translated content, since the site wouldn’t be accessible in that language.

Warning: Modeltranslation does not enforce the LANGUAGES setting to be defined in your project. When it
isn’t present (and neither is MODELTRANSLATION_LANGUAGES), it defaults to Django’s global LANGUAGES
setting instead, and that are quite a few languages!

Advanced Settings

Modeltranslation also has some advanced settings to customize its behaviour.

MODELTRANSLATION_DEFAULT_LANGUAGE

New in version 0.3.

Default: None

To override the default language as described in LANGUAGES, you can define a language in
MODELTRANSLATION_DEFAULT_LANGUAGE. Note that the value has to be in settings.LANGUAGES,
otherwise an ImproperlyConfigured exception will be raised.

Example:

MODELTRANSLATION_DEFAULT_LANGUAGE = 'en'

MODELTRANSLATION_LANGUAGES

New in version 0.8.

Default: same as LANGUAGES

Allow to set languages the content will be translated into. If not set, by default all languages listed in LANGUAGES
will be used.

Example:

LANGUAGES = (
('en', 'English'),
('de', 'German'),
('pl', 'Polish'),

)
MODELTRANSLATION_LANGUAGES = ('en', 'de')

6 Chapter 1. Modeltranslation

https://github.com/django/django/blob/master/django/conf/global_settings.py
https://github.com/django/django/blob/master/django/conf/global_settings.py

django-modeltranslation Documentation, Release dev

Note: This setting may become useful if your users shall produce content for a restricted set of languages, while your
application is translated into a greater number of locales.

MODELTRANSLATION_FALLBACK_LANGUAGES

New in version 0.5.

Default: (DEFAULT_LANGUAGE,)

By default modeltranslation will fallback to the computed value of the DEFAULT_LANGUAGE.
This is either the first language found in the LANGUAGES setting or the value defined through
MODELTRANSLATION_DEFAULT_LANGUAGE which acts as an override.

This setting allows for a more fine grained tuning of the fallback behaviour by taking additional languages into account.
The language order is defined as a tuple or list of language codes.

Example:

MODELTRANSLATION_FALLBACK_LANGUAGES = ('en', 'de')

Using a dict syntax it is also possible to define fallbacks by language. A default key is required in this case to
define the default behaviour of unlisted languages.

Example:

MODELTRANSLATION_FALLBACK_LANGUAGES = {'default': ('en', 'de'), 'fr': ('de',)}

Note: Each language has to be in the LANGUAGES setting, otherwise an ImproperlyConfigured exception is
raised.

MODELTRANSLATION_PREPOPULATE_LANGUAGE

New in version 0.7.

Default: current active language

By default modeltranslation will use the current request language for prepopulating admin fields specified in the
prepopulated_fields admin property. This is often used to automatically fill slug fields.

This setting allows you to pin this functionality to a specific language.

Example:

MODELTRANSLATION_PREPOPULATE_LANGUAGE = 'en'

Note: The language has to be in the LANGUAGES setting, otherwise an ImproperlyConfigured exception is
raised.

1.2. Table of Contents 7

django-modeltranslation Documentation, Release dev

MODELTRANSLATION_TRANSLATION_FILES

New in version 0.4.

Default: () (empty tuple)

Modeltranslation uses an autoregister feature similar to the one in Django’s admin. The autoregistration process will
look for a translation.py file in the root directory of each application that is in INSTALLED_APPS.

The setting MODELTRANSLATION_TRANSLATION_FILES is provided to extend the modules that are taken into
account.

Syntax:

MODELTRANSLATION_TRANSLATION_FILES = (
'<APP1_MODULE>.translation',
'<APP2_MODULE>.translation',

)

Example:

MODELTRANSLATION_TRANSLATION_FILES = (
'news.translation',
'projects.translation',

)

Note: Modeltranslation up to version 0.3 used a single project wide registration file which was defined through
MODELTRANSLATION_TRANSLATION_REGISTRY = '<PROJECT_MODULE>.translation'.

In version 0.4 and 0.5, for backwards compatibility, the module defined through this setting was automatically added
to MODELTRANSLATION_TRANSLATION_FILES. A DeprecationWarning was issued in this case.

In version 0.6 MODELTRANSLATION_TRANSLATION_REGISTRY is handled no more.

MODELTRANSLATION_CUSTOM_FIELDS

Default: () (empty tuple)

New in version 0.3.

Modeltranslation supports the fields listed in the Supported Fields Matrix. In most cases subclasses of the supported
fields will work fine, too. Unsupported fields will throw an ImproperlyConfigured exception.

The list of supported fields can be extended by defining a tuple of field names in your settings.py.

Example:

MODELTRANSLATION_CUSTOM_FIELDS = ('MyField', 'MyOtherField',)

Warning: This just prevents modeltranslation from throwing an ImproperlyConfigured exception. Any
unsupported field will most likely fail in one way or another. The feature is considered experimental and might be
replaced by a more sophisticated mechanism in future versions.

8 Chapter 1. Modeltranslation

django-modeltranslation Documentation, Release dev

MODELTRANSLATION_AUTO_POPULATE

Default: False

New in version 0.5.

This setting controls if the Multilingual Manager should automatically populate language field values in its create
and get_or_create method, and in model constructors, so that these two blocks of statements can be considered
equivalent:

News.objects.populate(True).create(title='-- no translation yet --')
with auto_populate(True):

q = News(title='-- no translation yet --')

same effect with MODELTRANSLATION_AUTO_POPULATE == True:

News.objects.create(title='-- no translation yet --')
q = News(title='-- no translation yet --')

Possible modes are listed here.

MODELTRANSLATION_DEBUG

Default: False

New in version 0.4.

Changed in version 0.7.

Used for modeltranslation related debug output. Currently setting it to False will just prevent Django’s development
server from printing the Registered xx models for translation message to stdout.

MODELTRANSLATION_ENABLE_FALLBACKS

Default: True

New in version 0.6.

Control if fallback (both language and value) will occur.

1.2.4 Registering Models for Translation

Modeltranslation can translate model fields of any model class. For each model to translate, a translation option class
containing the fields to translate is registered with a special object called the translator.

Registering models and their fields for translation requires the following steps:

1. Create a translation.py in your app directory.

2. Create a translation option class for every model to translate.

3. Register the model and the translation option class at modeltranslation.translator.translator.

The modeltranslation application reads the translation.py file in your app directory, thereby triggering the
registration of the translation options found in the file.

1.2. Table of Contents 9

django-modeltranslation Documentation, Release dev

A translation option is a class that declares which fields of a model to translate. The class must derive from
modeltranslation.translator.TranslationOptions and it must provide a fields attribute stor-
ing the list of fieldnames. The option class must be registered with the modeltranslation.translator.
translator instance.

To illustrate this, let’s have a look at a simple example using a News model. The news in this example only contains
a title and a text field. Instead of a news, this could be any Django model class:

class News(models.Model):
title = models.CharField(max_length=255)
text = models.TextField()

In order to tell modeltranslation to translate the title and text fields, create a translation.py file in your
news app directory and add the following:

from modeltranslation.translator import translator, TranslationOptions
from .models import News

class NewsTranslationOptions(TranslationOptions):
fields = ('title', 'text')

translator.register(News, NewsTranslationOptions)

Note that this does not require to change the News model in any way, it’s only imported. The
NewsTranslationOptions derives from TranslationOptions and provides the fields attribute. Finally
the model and its translation options are registered at the translator object.

New in version 0.10.

If you prefer, register is also available as a decorator, much like the one Django introduced for its admin in version
1.7. Usage is similar to the standard register, just provide arguments as you normally would, except the options
class which will be the decorated one:

from modeltranslation.translator import register, TranslationOptions
from news.models import News

@register(News)
class NewsTranslationOptions(TranslationOptions):

fields = ('title', 'text',)

At this point you are mostly done and the model classes registered for translation will have been added some auto-
magical fields. The next section explains how things are working under the hood.

TranslationOptions fields inheritance

New in version 0.5.

A subclass of any TranslationOptions will inherit fields from its bases (similar to the way Django models
inherit fields, but with a different syntax). When dealing with abstract base classes, this can be handy:

from modeltranslation.translator import translator, TranslationOptions
from news.models import News, NewsWithImage

class AbstractNewsTranslationOptions(TranslationOptions):
fields = ('title', 'text',)

class NewsWithImageTranslationOptions(AbstractNewsTranslationOptions):
(continues on next page)

10 Chapter 1. Modeltranslation

django-modeltranslation Documentation, Release dev

(continued from previous page)

fields = ('image',)

translator.register(News, NewsTranslationOptions)
translator.register(NewsWithImage, NewsWithImageTranslationOptions)

The above example adds the fields title and text from the AbstractNewsTranslationOptions class to
NewsWithImageTranslationOptions, or to say it in code:

assert NewsWithImageTranslationOptions.fields == ('title', 'text', 'image')

Of course multiple inheritance and inheritance chains (A > B > C) also work as expected.

However, if the base class is not abstract, inheriting the TranslationOptions will cause errors, because the base
TranslationOptions already took care of adding fields to the model. The example below illustrates how to add
translation fields to a child model with a non-abstract base:

from modeltranslation.translator import translator, TranslationOptions
from news.models import News, NewsWithImage

class NewsTranslationOptions(TranslationOptions):
fields = ('title', 'text',)

class NewsWithImageTranslationOptions(TranslationOptions):
fields = ('image',)

translator.register(News, NewsTranslationOptions)
translator.register(NewsWithImage, NewsWithImageTranslationOptions)

This will add the translated fields title and text to the News model and further add the translated field image to
the NewsWithImage model.

Note: When upgrading from a previous modeltranslation version (<0.5), please review your
TranslationOptions classes and see if introducing fields inheritance broke the project (if you had always
subclassed TranslationOptions only, there is no risk).

Changes Automatically Applied to the Model Class

After registering the News model for translation a SQL dump of the news app will look like this:

$./manage.py sqlall news
BEGIN;
CREATE TABLE `news_news` (

`id` integer AUTO_INCREMENT NOT NULL PRIMARY KEY,
`title` varchar(255) NOT NULL,
`title_de` varchar(255) NULL,
`title_en` varchar(255) NULL,
`text` longtext NULL,
`text_de` longtext NULL,
`text_en` longtext NULL,

)
;
CREATE INDEX `news_news_page_id` ON `news_news` (`page_id`);
COMMIT;

1.2. Table of Contents 11

django-modeltranslation Documentation, Release dev

Note the title_de, title_en, text_de and text_en fields which are not declared in the original Newsmodel
class but rather have been added by the modeltranslation app. These are called translation fields. There will be one
for every language in your project’s settings.py.

The names of these additional fields are built using the original name of the translated field and appending one of the
language identifiers found in the settings.LANGUAGES.

As these fields are added to the registered model class as fully valid Django model fields, they will appear in the db
schema for the model although it has not been specified on the model explicitly.

Precautions regarding registration approach

Be aware that registration approach (as opposed to base-class approach) to models translation has a few caveats, though
(despite many pros).

First important thing to note is the fact that translatable models are being patched - that means their fields list is
not final until the modeltranslation code executes. In normal circumstances it shouldn’t affect anything - as long as
models.py contain only models’ related code.

For example: consider a project where a ModelForm is declared in models.py just after its model. When the
file is executed, the form gets prepared - but it will be frozen with old fields list (without translation fields). That’s
because the ModelForm will be created before modeltranslation would add new fields to the model (ModelForm
gather fields info at class creation time, not instantiation time). Proper solution is to define the form in forms.py,
which wouldn’t be imported alongside with models.py (and rather imported from views file or urlconf).

Generally, for seamless integration with modeltranslation (and as sensible design anyway), the models.py should
contain only bare models and model related logic.

Committing fields to database

If you are starting a fresh project and have considered your translation needs in the beginning then simply sync
your database (./manage.py syncdb or ./manage.py schemamigration myapp --initial if using
South) and you are ready to use the translated models.

In case you are translating an existing project and your models have already been synced to the database you will need
to alter the tables in your database and add these additional translation fields. If you are using South, you’re done:
simply create a new migration (South will detect newly added translation fields) and apply it. If not, you can use a
little helper: The sync_translation_fields Command which can execute schema-ALTERing SQL to add new fields. Use
either of these two solutions, not both.

If you are adding translation fields to a third-party app, things get more complicated. In order to be able to up-
date the app in the future, and to feel comfortable, you should use the sync_translation_fields command.
Although it’s possible to introduce new fields in a migration, it’s nasty and involves copying migration files, using
MIGRATION_MODULES setting, so we don’t recommend it. Invoking sync_translation_fields is plain
easier.

Note that all added fields are by default declared blank=True and null=True no matter if the original field is
required or not. In other words - all translations are optional, unless an explicit option is provided - see Required fields.

To populate the default translation fields added by modeltranslation with values from existing database fields, you can
use the update_translation_fields command. See The update_translation_fields Command for more info
on this.

Migrations (Django 1.7)

New in version 0.8.

12 Chapter 1. Modeltranslation

django-modeltranslation Documentation, Release dev

Modeltranslation supports the migration system introduced by Django 1.7. Besides the normal workflow as described
in Django’s Migration docs, you should do a migration whenever one of the following changes have been made to
your project:

• Added or removed a language through settings.LANGUAGES or settings.MODELTRANSLATION
LANGUAGES.

• Registered or unregistered a field through TranslationOptions.fields.

It doesn’t matter if you are starting a fresh project or change an existing one, it’s always:

1. python manage.py makemigrations to create a new migration with the added or removed fields.

2. python manage.py migrate to apply the changes.

Note: Support for migrations is implemented through fields.TranslationField.deconstruct(self)
and respects changes to the null option.

Required fields

New in version 0.8.

By default, all translation fields are optional (not required). This can be changed using a special attribute on
TranslationOptions:

class NewsTranslationOptions(TranslationOptions):
fields = ('title', 'text',)
required_languages = ('en', 'de')

It’s quite self-explanatory: for German and English, all translation fields are required. For other languages - optional.

A more fine-grained control is available:

class NewsTranslationOptions(TranslationOptions):
fields = ('title', 'text',)
required_languages = {'de': ('title', 'text'), 'default': ('title',)}

For German, all fields (both title and text) are required; for all other languages - only title is required. The
'default' is optional.

Note: Requirement is enforced by blank=False. Please remember that it will trigger validation only in mod-
elforms and admin (as always in Django). Manual model validation can be performed via the full_clean()
model method.

The required fields are still null=True, though.

TranslationOptions attributes reference

Quick cheatsheet with links to proper docs sections and examples showing expected syntax.

Classes inheriting from TranslationOptions can have following attributes defined:

TranslationOptions.fields(required)
List of translatable model fields. See Registering Models for Translation.

Some fields can be implicitly added through inheritance, see TranslationOptions fields inheritance.

1.2. Table of Contents 13

https://docs.djangoproject.com/en/dev/topics/migrations/#workflow

django-modeltranslation Documentation, Release dev

TranslationOptions.fallback_languages
Control order of languages for fallback purposes. See Fallback languages.

fallback_languages = {'default': ('en', 'de', 'fr'), 'uk': ('ru',)}

TranslationOptions.fallback_values
Set the value that should be used if no fallback language yielded a value. See Fallback values.

fallback_values = _('-- sorry, no translation provided --')
fallback_values = {'title': _('Object not translated'), 'text': '---'}

TranslationOptions.fallback_undefined
Set what value should be considered “no value”. See Fallback undefined.

fallback_undefined = None
fallback_undefined = {'title': 'no title', 'text': None}

TranslationOptions.empty_values
Override the value that should be saved in forms on empty fields. See Formfields and nullability.

empty_values = ''
empty_values = {'title': '', 'slug': None, 'desc': 'both'}

TranslationOptions.required_languages
Control which translation fields are required. See Required fields.

required_languages = ('en', 'de')
required_languages = {'de': ('title','text'), 'default': ('title',)}

Supported Fields Matrix

While the main purpose of modeltranslation is to translate text-like fields, translating other fields can be useful in
several situations. The table lists all model fields available in Django and gives an overview about their current
support status:

14 Chapter 1. Modeltranslation

django-modeltranslation Documentation, Release dev

Model Field 0.4 0.5 0.7
AutoField No No No
BigIntegerField No Yes* Yes*
BooleanField No Yes Yes
CharField Yes Yes Yes
CommaSeparatedIntegerField No Yes Yes
DateField No Yes Yes
DateTimeField No Yes Yes
DecimalField No Yes Yes
EmailField Yes* Yes* Yes*
FileField Yes Yes Yes
FilePathField Yes* Yes* Yes*
FloatField No Yes Yes
ImageField Yes Yes Yes
IntegerField No Yes Yes
IPAddressField No Yes Yes
GenericIPAddressField No Yes Yes
NullBooleanField No Yes Yes
PositiveIntegerField No Yes* Yes*
PositiveSmallIntegerField No Yes* Yes*
SlugField Yes* Yes* Yes*
SmallIntegerField No Yes* Yes*
TextField Yes Yes Yes
TimeField No Yes Yes
URLField Yes* Yes* Yes*
ForeignKey No No Yes
OneToOneField No No Yes
ManyToManyField No No No

* Implicitly supported (as subclass of a supported field)

1.2.5 Accessing Translated and Translation Fields

Modeltranslation changes the behaviour of the translated fields. To explain this consider the news example from the
Registering Models for Translation chapter again. The original News model looked like this:

class News(models.Model):
title = models.CharField(max_length=255)
text = models.TextField()

Now that it is registered with modeltranslation the model looks like this - note the additional fields automatically added
by the app:

class News(models.Model):
title = models.CharField(max_length=255) # original/translated field
title_de = models.CharField(null=True, blank=True, max_length=255) # default

→˓translation field
title_en = models.CharField(null=True, blank=True, max_length=255) # translation

→˓field
text = models.TextField() # original/translated field
text_de = models.TextField(null=True, blank=True) # default translation field
text_en = models.TextField(null=True, blank=True) # translation field

1.2. Table of Contents 15

django-modeltranslation Documentation, Release dev

The example above assumes that the default language is de, therefore the title_de and text_de fields are marked
as the default translation fields. If the default language is en, the title_en and text_en fields would be the default
translation fields.

Rules for Translated Field Access

Changed in version 0.5.

So now when it comes to setting and getting the value of the original and the translation fields the following rules
apply:

Rule 1

Reading the value from the original field returns the value translated to the current language.

Rule 2

Assigning a value to the original field updates the value in the associated current language translation
field.

Rule 3

If both fields - the original and the current language translation field - are updated at the same time, the
current language translation field wins.

Note: This can only happen in the model’s constructor or objects.create. There is no other
situation which can be considered changing several fields at the same time.

Examples for Translated Field Access

Because the whole point of using the modeltranslation app is translating dynamic content, the fields marked for trans-
lation are somehow special when it comes to accessing them. The value returned by a translated field is depending on
the current language setting. “Language setting” is referring to the Django set_language view and the corresponding
get_lang function.

Assuming the current language is de in the news example from above, the translated title field will return the value
from the title_de field:

Assuming the current language is "de"
n = News.objects.all()[0]
t = n.title # returns german translation

Assuming the current language is "en"
t = n.title # returns english translation

This feature is implemented using Python descriptors making it happen without the need to touch the original model
classes in any way. The descriptor uses the django.utils.i18n.get_language function to determine the
current language.

Todo: Add more examples.

16 Chapter 1. Modeltranslation

https://docs.djangoproject.com/en/dev/topics/i18n/translation/#set-language-redirect-view

django-modeltranslation Documentation, Release dev

Multilingual Manager

New in version 0.5.

Every model registered for translation is patched so that all its managers become subclasses of
MultilingualManager (of course, if a custom manager was defined on the model, its functions will be
retained). MultilingualManager simplifies language-aware queries, especially on third-party apps, by rewriting
query field names.

Every model’s manager is patched, not only objects (even managers inherited from abstract base classes).

For example:

Assuming the current language is "de",
these queries returns the same objects
news1 = News.objects.filter(title__contains='enigma')
news2 = News.objects.filter(title_de__contains='enigma')

assert news1 == news2

It works as follow: if the translation field name is used (title), it is changed into the current language field name
(title_de or title_en, depending on the current active language). Any language-suffixed names are left un-
touched (so title_en wouldn’t change, no matter what the current language is).

Rewriting of field names works with operators (like __in, __ge) as well as with relationship spanning. Moreover, it
is also handled on Q and F expressions.

These manager methods perform rewriting:

• filter(), exclude(), get()

• order_by()

• update()

• only(), defer()

• values(), values_list(), with fallback mechanism

• dates()

• select_related()

• create(), with optional auto-population feature

In order not to introduce differences between X.objects.create(...) and X(...), model constructor is also
patched and performs rewriting of field names prior to regular initialization.

If one wants to turn rewriting of field names off, this can be easily achieved with rewrite(mode) method. mode
is a boolean specifying whether rewriting should be applied. It can be changed several times inside a query. So
X.objects.rewrite(False) turns rewriting off.

MultilingualManager offers one additional method: raw_values. It returns actual values from the database,
without field names rewriting. Useful for checking translated field database value.

Auto-population

Changed in version 0.6.

There is special manager method populate(mode) which can trigger create() or get_or_create() to
populate all translation (language) fields with values from translated (original) ones. It can be very convenient when
working with many languages. So:

1.2. Table of Contents 17

django-modeltranslation Documentation, Release dev

x = News.objects.populate(True).create(title='bar')

is equivalent of:

x = News.objects.create(title_en='bar', title_de='bar') ## title_?? for every language

Moreover, some fields can be explicitly assigned different values:

x = News.objects.populate(True).create(title='-- no translation yet --', title_de=
→˓'enigma')

It will result in title_de == 'enigma' and other title_?? == '-- no translation yet --'.

There is another way of altering the current population status, an auto_populate context manager:

from modeltranslation.utils import auto_populate

with auto_populate(True):
x = News.objects.create(title='bar')

Auto-population takes place also in model constructor, what is extremely useful when loading non-translated fixtures.
Just remember to use the context manager:

with auto_populate(): # True can be ommited
call_command('loaddata', 'fixture.json') # Some fixture loading

z = News(title='bar')
print(z.title_en, z.title_de) # prints 'bar bar'

There is a more convenient way than calling populate manager method or entering auto_populate man-
ager context all the time: MODELTRANSLATION_AUTO_POPULATE setting. It controls the default population
behaviour.

Auto-population modes

There are four different population modes:

False [set by default]

Auto-population turned off

True or 'all' [default argument to population altering methods]

Auto-population turned on, copying translated field value to all other languages (unless a translation field value
is provided)

'default' Auto-population turned on, copying translated field value to default language field (unless its value is
provided)

'required' Acts like 'default', but copy value only if the original field is non-nullable

Falling back

Modeltranslation provides a mechanism to control behaviour of data access in case of empty translation values. This
mechanism affects field access, as well as values() and values_list() manager methods.

18 Chapter 1. Modeltranslation

django-modeltranslation Documentation, Release dev

Consider the News example: a creator of some news hasn’t specified its German title and content, but only English
ones. Then if a German visitor is viewing the site, we would rather show him English title/content of the news than
display empty strings. This is called fallback.

news.title_en = 'English title'
news.title_de = ''
print(news.title)
If current active language is German, it should display the title_de field value ('
→˓').
But if fallback is enabled, it would display 'English title' instead.

Similarly for manager
news.save()
print(News.objects.filter(pk=news.pk).values_list('title', flat=True)[0])
As above: if current active language is German and fallback to English is enabled,
it would display 'English title'.

There are several ways of controlling fallback, described below.

Fallback languages

New in version 0.5.

MODELTRANSLATION_FALLBACK_LANGUAGES setting allows to set the order of fallback languages. By default
that’s the DEFAULT_LANGUAGE.

For example, setting

MODELTRANSLATION_FALLBACK_LANGUAGES = ('en', 'de', 'fr')

means: if current active language field value is unset, try English value. If it is also unset, try German, and so on -
until some language yields a non-empty value of the field.

There is also an option to define a fallback by language, using dict syntax:

MODELTRANSLATION_FALLBACK_LANGUAGES = {
'default': ('en', 'de', 'fr'),
'fr': ('de',),
'uk': ('ru',)

}

The default key is required and its value denote languages which are always tried at the end. With such a setting:

• for uk the order of fallback languages is: ('ru', 'en', 'de', 'fr')

• for fr the order of fallback languages is: ('de', 'en') - Note, that fr obviously is not a fallback, since its
active language and de would be tried before en

• for en and de the fallback order is ('de', 'fr') and ('en', 'fr'), respectively

• for any other language the order of fallback languages is just ('en', 'de', 'fr')

What is more, fallback languages order can be overridden per model, using TranslationOptions:

class NewsTranslationOptions(TranslationOptions):
fields = ('title', 'text',)
fallback_languages = {'default': ('fa', 'km')} # use Persian and Khmer as

→˓fallback for News

1.2. Table of Contents 19

django-modeltranslation Documentation, Release dev

Dict syntax is only allowed there.

New in version 0.6.

Even more, all fallbacks may be switched on or off for just some exceptional block of code using:

from modeltranslation.utils import fallbacks

with fallbacks(False):
Work with values for the active language only

Fallback values

New in version 0.4.

But what if current language and all fallback languages yield no field value? Then modeltranslation will use the field’s
fallback value, if one was defined.

Fallback values are defined in TranslationOptions, for example:

class NewsTranslationOptions(TranslationOptions):
fields = ('title', 'text',)
fallback_values = _('-- sorry, no translation provided --')

In this case, if title is missing in active language and any of fallback languages, news title will be '-- sorry, no
translation provided --' (maybe translated, since gettext is used). Empty text will be handled in same way.

Fallback values can be also customized per model field:

class NewsTranslationOptions(TranslationOptions):
fields = ('title', 'text',)
fallback_values = {

'title': _('-- sorry, this news was not translated --'),
'text': _('-- please contact our translator (translator@example.com) --')

}

If current language and all fallback languages yield no field value, and no fallback values are defined, then model-
translation will use the field’s default value.

Fallback undefined

New in version 0.7.

Another question is what do we consider “no value”, on what value should we fall back to other translations? For text
fields the empty string can usually be considered as the undefined value, but other fields may have different concepts
of empty or missing values.

Modeltranslation defaults to using the field’s default value as the undefined value (the empty string for non-nullable
CharFields). This requires calling get_default for every field access, which in some cases may be expensive.

If you’d like to fall back on a different value or your default is expensive to calculate, provide a custom undefined
value (for a field or model):

class NewsTranslationOptions(TranslationOptions):
fields = ('title', 'text',)
fallback_undefined = {

'title': 'no title',

(continues on next page)

20 Chapter 1. Modeltranslation

django-modeltranslation Documentation, Release dev

(continued from previous page)

'text': None
}

The State of the Original Field

Changed in version 0.5.

Changed in version 0.12.

As defined by the Rules for Translated Field Access, accessing the original field is guaranteed to work on the associated
translation field of the current language. This applies to both, read and write operations.

The actual field value (which can still be accessed through instance.
__dict__['original_field_name']) however has to be considered undetermined once the field has
been registered for translation. Attempts to keep the value in sync with either the default or current language’s field
value has raised a boatload of unpredictable side effects in older versions of modeltranslation.

Since version 0.12 the original field is expected to have even more undetermined value. It’s because Django 1.10
changed the way deferred fields work.

Warning: Do not rely on the underlying value of the original field in any way!

Todo: Perhaps outline effects this might have on the update_translation_field management command.

1.2.6 ModelForms

ModelForms for multilanguage models are defined and handled as typical ModelForms. Please note, however,
that they shouldn’t be defined next to models (see a note).

Editing multilanguage models with all translation fields in the admin backend is quite sensible. However, presenting
all model fields to the user on the frontend may be not the right way. Here comes the TranslationModelForm
which strip out all translation fields:

from news.models import News
from modeltranslation.forms import TranslationModelForm

class MyForm(TranslationModelForm):
class Meta:

model = News

Such a form will contain only original fields (title, text - see example). Of course, upon saving, provided values would
be set on proper attributes, depending on the user current language.

Formfields and nullability

New in version 0.7.1.

Note: Please remember that all translation fields added to model definition are nullable (null=True), regardless of
the original field nullability.

1.2. Table of Contents 21

django-modeltranslation Documentation, Release dev

In most cases formfields for translation fields behave as expected. However, there is one annoying problem with
models.CharField - probably the most commonly translated field type.

The problem is that default formfield for CharField stores empty values as empty strings (''), even if the field is
nullable (see django ticket #9590).

Thus formfields for translation fields are patched by modeltranslation. The following rules apply:

• If the original field is not nullable, an empty value is saved as '';

• If the original field is nullable, an empty value is saved as None.

To deal with complex cases, these rules can be overridden per model or even per field using TranslationOptions:

class NewsTranslationOptions(TranslationOptions):
fields = ('title', 'text',)
empty_values = None

class ProjectTranslationOptions(TranslationOptions):
fields = ('name', 'slug', 'description',)
empty_values = {'name': '', 'slug': None}

If a field is not mentioned while using dict syntax, the default rules apply.

This configuration is especially useful for fields with unique constraints:

class Category(models.Model):
name = models.CharField(max_length=40)
slug = models.SlugField(max_length=30, unique=True)

Because the slug field is not nullable, its translation fields would store empty values as '' and that would result in
an error when two or more Categories are saved with slug_en empty - unique constraints wouldn’t be satisfied.
Instead, None should be stored, as several None values in the database don’t violate uniqueness:

class CategoryTranslationOptions(TranslationOptions):
fields = ('name', 'slug')
empty_values = {'slug': None}

None-checkbox widget

Maybe there is a situation where you want to store both - empty strings and None values - in a field. For such a
scenario there is a third configuration value: 'both':

class NewsTranslationOptions(TranslationOptions):
fields = ('title', 'text',)
empty_values = {'title': None, 'text': 'both'}

It results in a special widget with a None-checkbox to null a field. It’s not recommended in frontend as users may be
confused what this None is. The only useful place for this widget might be the admin backend; see Formfields with
None-checkbox.

To sum it up, the valid values for empty_values are: None, '' and 'both'.

1.2.7 Django Admin Integration

In order to be able to edit the translations via the django.contrib.admin application you need to register a
special admin class for the translated models. The admin class must derive from modeltranslation.admin.

22 Chapter 1. Modeltranslation

http://code.djangoproject.com/ticket/9590

django-modeltranslation Documentation, Release dev

TranslationAdmin which does some funky patching on all your models registered for translation. Taken the news
example the most simple case would look like:

from django.contrib import admin
from news.models import News
from modeltranslation.admin import TranslationAdmin

class NewsAdmin(TranslationAdmin):
pass

admin.site.register(News, NewsAdmin)

Tweaks Applied to the Admin

formfield_for_dbfield

The TranslationBaseModelAdmin class, which TranslationAdmin and all inline related classes in model-
translation derive from, implements a special method which is formfield_for_dbfield(self, db_field,

**kwargs). This method does the following:

1. Copies the widget of the original field to each of its translation fields.

2. Checks if the original field was required and if so makes the default translation field required instead.

get_form/get_fieldsets

In addition the TranslationBaseModelAdmin class overrides get_form and get_fieldsets to make the
options fields, exclude and fieldsets work in a transparent way. It basically does:

1. Removes the original field from every admin form by adding it to exclude under the hood.

2. Replaces the - now removed - original fields with their corresponding translation fields.

Taken the fieldsets option as an example, where the title field is registered for translation but not the news
field:

class NewsAdmin(TranslationAdmin):
fieldsets = [

(u'News', {'fields': ('title', 'news',)})
]

In this case get_fieldsets will return a patched fieldset which contains the translation fields of title, but not
the original field:

>>> a = NewsAdmin(NewsModel, site)
>>> a.get_fieldsets(request)
[(u'News', {'fields': ('title_de', 'title_en', 'news',)})]

TranslationAdmin in Combination with Other Admin Classes

If there already exists a custom admin class for a translated model and you don’t want or can’t edit that class directly
there is another solution.

Taken a reusable blog app which defines a model Entry and a corresponding admin class called EntryAdmin. This
app is not yours and you don’t want to touch it at all.

1.2. Table of Contents 23

django-modeltranslation Documentation, Release dev

In the most common case you simply make use of Python’s support for multiple inheritance like this:

class MyTranslatedEntryAdmin(EntryAdmin, TranslationAdmin):
pass

The class is then registered for the admin.site (not to be confused with modeltranslation’s translator). If
EntryAdmin is already registered through the blog app, it has to be unregistered first:

admin.site.unregister(Entry)
admin.site.register(Entry, MyTranslatedEntryAdmin)

Admin Classes that Override formfield_for_dbfield

In a more complex setup the original EntryAdmin might override formfield_for_dbfield itself:

class EntryAdmin(model.Admin):
def formfield_for_dbfield(self, db_field, **kwargs):

does some funky stuff with the formfield here

Unfortunately the first example won’t work anymore because Python can only execute one of the
formfield_for_dbfield methods. Since both admin classes implement this method Python must make a deci-
sion and it chooses the first class EntryAdmin. The functionality from TranslationAdmin will not be executed
and translation in the admin will not work for this class.

But don’t panic, here’s a solution:

class MyTranslatedEntryAdmin(EntryAdmin, TranslationAdmin):
def formfield_for_dbfield(self, db_field, **kwargs):

field = super(MyTranslatedEntryAdmin, self).formfield_for_dbfield(db_field,
→˓**kwargs)

self.patch_translation_field(db_field, field, **kwargs)
return field

This implements the formfield_for_dbfield such that both functionalities will be executed. The first line
calls the superclass method which in this case will be the one of EntryAdmin because it is the first class inherited
from. The TranslationAdmin capsulates its functionality in the patch_translation_field method and
the formfield_for_dbfield implementation of the TranslationAdmin class simply calls it. You can copy
this behaviour by calling it from a custom admin class and that’s done in the example above. After that the field is
fully patched for translation and finally returned.

Admin Inlines

New in version 0.2.

Support for tabular and stacked inlines, common and generic ones.

A translated inline must derive from one of the following classes:

• modeltranslation.admin.TranslationTabularInline

• modeltranslation.admin.TranslationStackedInline

• modeltranslation.admin.TranslationGenericTabularInline

• modeltranslation.admin.TranslationGenericStackedInline

24 Chapter 1. Modeltranslation

django-modeltranslation Documentation, Release dev

Just like TranslationAdmin these classes implement a special method formfield_for_dbfieldwhich does
all the patching.

For our example we assume that there is a new model called Image. The definition is left out for simplicity. Our
News model inlines the new model:

from django.contrib import admin
from news.models import Image, News
from modeltranslation.admin import TranslationTabularInline

class ImageInline(TranslationTabularInline):
model = Image

class NewsAdmin(admin.ModelAdmin):
list_display = ('title',)
inlines = [ImageInline,]

admin.site.register(News, NewsAdmin)

Note: In this example only the Image model is registered in translation.py. It’s not a requirement that
NewsAdmin derives from TranslationAdmin in order to inline a model which is registered for translation.

Complex Example with Admin Inlines

In this more complex example we assume that the News and Image models are registered in translation.
py. The News model has an own custom admin class called NewsAdmin and the Image model an
own generic stacked inline class called ImageInline. Furthermore we assume that NewsAdmin overrides
formfield_for_dbfield itself and the admin class is already registered through the news app.

Note: The example uses the technique described in TranslationAdmin in combination with other admin classes.

Bringing it all together our code might look like this:

from django.contrib import admin
from news.admin import ImageInline
from news.models import Image, News
from modeltranslation.admin import TranslationAdmin, TranslationGenericStackedInline

class TranslatedImageInline(ImageInline, TranslationGenericStackedInline):
model = Image

class TranslatedNewsAdmin(NewsAdmin, TranslationAdmin):
inlines = [TranslatedImageInline,]

def formfield_for_dbfield(self, db_field, **kwargs):
field = super(TranslatedNewsAdmin, self).formfield_for_dbfield(db_field,

→˓**kwargs)
self.patch_translation_field(db_field, field, **kwargs)
return field

admin.site.unregister(News)
admin.site.register(News, NewsAdmin)

1.2. Table of Contents 25

django-modeltranslation Documentation, Release dev

Using Tabbed Translation Fields

New in version 0.3.

Modeltranslation supports separation of translation fields via jquery-ui tabs. The proposed way to include it is through
the inner Media class of a TranslationAdmin class like this:

class NewsAdmin(TranslationAdmin):
class Media:

js = (
'modeltranslation/js/force_jquery.js',
'http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.24/jquery-ui.min.js',
'modeltranslation/js/tabbed_translation_fields.js',

)
css = {

'screen': ('modeltranslation/css/tabbed_translation_fields.css',),
}

Note: Here we stick to the jquery library shipped with Django. The force_jquery.js script is necessary when
using Django’s built-in django.jQuery object. Otherwise the normal jQuery object won’t be available to the
included (non-namespaced) jquery-ui library.

Standard jquery-ui theming can be used to customize the look of tabs, the provided css file is supposed to work well
with a default Django admin.

As an alternative, if want to use a more recent version of jquery, you can do so by including this in your Media class
instead:

class NewsAdmin(TranslationAdmin):
class Media:

js = (
'http://ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js',
'http://ajax.googleapis.com/ajax/libs/jqueryui/1.10.2/jquery-ui.min.js',
'modeltranslation/js/tabbed_translation_fields.js',

)
css = {

'screen': ('modeltranslation/css/tabbed_translation_fields.css',),
}

Tabbed Translation Fields Admin Classes

New in version 0.7.

To ease the inclusion of the required static files for tabbed translation fields, the following admin classes are provided:

• TabbedDjangoJqueryTranslationAdmin (aliased to TabbedTranslationAdmin)

• TabbedExternalJqueryTranslationAdmin

Rather than inheriting from TranslationAdmin, simply subclass one of these classes like this:

class NewsAdmin(TabbedTranslationAdmin):
pass

26 Chapter 1. Modeltranslation

django-modeltranslation Documentation, Release dev

TranslationAdmin Options

TranslationAdmin.group_fieldsets

New in version 0.6.

When this option is activated untranslated and translation fields are grouped into separate fieldsets. The first fieldset
contains the untranslated fields, followed by a fieldset for each translation field. The translation field fieldsets use the
original field’s verbose_name as a label.

Activating the option is a simple way to reduce the visual clutter one might experience when mixing these different
types of fields.

The group_fieldsets option expects a boolean. By default fields are not grouped into fieldsets
(group_fieldsets = False).

A few simple policies are applied:

• A fieldsets option takes precedence over the group_fieldsets option.

• Other default ModelAdmin options like exclude are respected.

class NewsAdmin(TranslationAdmin):
group_fieldsets = True

Formfields with None-checkbox

There is the special widget which allow to choose whether empty field value should be stores as empty string or
None (see None-checkbox widget). In TranslationAdmin some fields can use this widget regardless of their
empty_values setting:

class NewsAdmin(TranslationAdmin):
both_empty_values_fields = ('title', 'text')

1.2.8 Management Commands

The update_translation_fields Command

In case modeltranslation was installed in an existing project and you have specified to translate fields of models which
are already synced to the database, you have to update your database schema (see Committing fields to database).

Unfortunately the newly added translation fields on the model will be empty then, and your templates will show the
translated value of the fields (see Rule 1) which will be empty in this case. To correctly initialize the default translation
field you can use the update_translation_fields command:

$ python manage.py update_translation_fields

Taken the news example used throughout the documentation this command will copy the value from the news object’s
title field to the translation field title_de. It only does so if the translation field is empty otherwise nothing is
copied.

On default, only the default language will have its translation field populated, but you can provide a --language
option to specify any other language listed in settings.py.

1.2. Table of Contents 27

django-modeltranslation Documentation, Release dev

Note: Unless you configured modeltranslation to override the default language the command will examine your
settings.LANGUAGES variable and the first language declared there will be used as the default language.

All translated models (as specified in the translation files) from all apps will be populated with initial data.

Optionally, an app label and model name may be passed to populate only a subset of translated models.

$ python manage.py update_translation_fields myapp

$ python manage.py update_translation_fields myapp mymodel

The sync_translation_fields Command

New in version 0.4.

$ python manage.py sync_translation_fields

This command compares the database and translated models definitions (finding new translation fields) and provides
SQL statements to alter tables. You should run this command after adding a new language to your settings.
LANGUAGES or a new field to the TranslationOptions of a registered model.

However, if you are using South in your project, in most cases it’s recommended to use migration instead of
sync_translation_fields. See Committing fields to database for detailed info and use cases.

The loaddata Command

New in version 0.7.

An extended version of Django’s original loaddata command which adds an optional populate keyword. If the
keyword is specified, the normal loading command will be run under the selected auto-population modes.

By default no auto-population is performed.

$ python manage.py loaddata --populate=all fixtures.json

Allowed modes are listed here. To choose False (turn off auto-population) specify '0' or 'false':

$ python manage.py loaddata --populate=false fixtures.json
$ python manage.py loaddata --populate=0 fixtures.json

Note: If populate is not specified, the current auto-population mode is used. Current means the one set by settings.

Moreover, this loaddata command version can override the nasty habit of changing locale to en-us. By default, it
will retain the proper locale. To get the old behaviour back, set settings-modeltranslation_loaddata_retain_locale to
False.

1.2.9 Caveats

28 Chapter 1. Modeltranslation

django-modeltranslation Documentation, Release dev

Accessing Translated Fields Outside Views

Since the modeltranslation mechanism relies on the current language as it is returned by the get_language function
care must be taken when accessing translated fields outside a view function.

Within a view function the language is set by Django based on a flexible model described at How Django discovers
language preference which is normally used only by Django’s static translation system.

When a translated field is accessed in a view function or in a template, it uses the django.utils.translation.
get_language function to determine the current language and return the appropriate value.

Outside a view (or a template), i.e. in normal Python code, a call to the get_language function still returns a value,
but it might not what you expect. Since no request is involved, Django’s machinery for discovering the user’s preferred
language is not activated. For this reason modeltranslation adds a thin wrapper (modeltranslation.utils.
get_language) around the function which guarantees that the returned language is listed in the LANGUAGES
setting.

The unittests use the django.utils.translation.trans_real functions to activate and deactive a specific
language outside a view function.

Using in combination with django-audit-log

django-audit-log is a package that allows you to track changes to your model instances (documentation). As
django-audit-log behind the scenes automatically creates “shadow” models for your tracked models, you have
to remember to register these shadow models for translation as well as your regular models. Here’s an example:

from modeltranslation.translator import register, TranslationOptions

from my_app import models

@register(models.MyModel)
@register(models.MyModel.audit_log.model)
class MyModelTranslationOptions(TranslationOptions):

"""Translation options for MyModel."""

fields = (
'text',
'title',

)

If you forget to register the shadow models, you will get an error like:

TypeError: 'text_es' is an invalid keyword argument for this function

Using in combination with django-rest-framework

When creating a new viewset , make sure to override get_queryset method, using queryset as a property won’t
work because it is being evaluated once, before any language was set.

Translating ManyToManyField fields

Translated ManyToManyField fields do not support fallbacks. This is because the field descriptor returns a
Manager when accessed. If falbacks were enabled we could find ourselves using the manager of a different lan-

1.2. Table of Contents 29

https://docs.djangoproject.com/en/dev/topics/i18n/translation/#how-django-discovers-language-preference
https://docs.djangoproject.com/en/dev/topics/i18n/translation/#how-django-discovers-language-preference
https://django-audit-log.readthedocs.io/

django-modeltranslation Documentation, Release dev

guage than the current one without realizing it. This can lead to using the .set() method on the wrong language.
Due to this behavior the fallbacks on M2M fields have been disabled.

1.2.10 How to Contribute

There are various ways how you can contribute to the project.

Contributing Code

The preferred way for code contributions are pull requests at Github, usually created against master.

Use [Convential commits](https://www.conventionalcommits.org/en/v1.0.0/) for commit messages.

Note: In order to be properly blamed for a contribution, please verify that the email you commit with is connected to
your Github account (see help.github.com for details).

Coding Style

Please make sure that your code follows the PEP 8 style guide. The only exception we make is to allow a maximum
line length of 100. Furthermore your code has to validate against pyflakes. It is recommended to use flake8 which
combines all the checks, and black for code formatting.

$ flake8 modeltranslation
$ black modeltranslation *.py

The #NOQA mark added by flake8 should be used sparsely.

Django and Python Versions

We always try to support at least the two latest major versions of Django, as well as Django’s development version.
While we can not guarantee the latter to be supported in early development stages of a new Django version, we aim to
achieve support once it has seen its first release candidate.

The supported Python versions can be derived from the supported Django versions. Example (from the past) where
we support Python 2.5, 2.6 and 2.7:

• Django 1.3 (old stable) supports Python 2.5, 2.6, 2.7

• Django 1.4 (current stable) supports Python 2.5, 2.6, 2.7

• Django 1.5 (dev) supports Python 2.6, 2.7

Python 3 is supported since 0.7 release. Although 0.6 release supported Django 1.5 (which started Python 3 compli-
ance), it was not Python 3 ready yet.

Unittests

To test Modeltranslation, you can use the comprehensive test suite that comes with the package. First, make sure you
have installed the project’s requirements using Poetry. Once the requirements are installed, you can run the tests using
pytest. This will run all of the tests in the test suite and report any failures or errors.

30 Chapter 1. Modeltranslation

https://github.com/deschler/django-modeltranslation
https://www.conventionalcommits.org/en/v1.0.0/
https://help.github.com/articles/why-are-my-commits-linked-to-the-wrong-user
http://www.python.org/dev/peps/pep-0008/
https://pypi.python.org/pypi/pyflakes
https://pypi.python.org/pypi/flake8
https://pypi.python.org/pypi/flake8

django-modeltranslation Documentation, Release dev

$ pip install poetry
$ poetry install
$ poetry run pytest

Non trivial changes and new features should always be accompanied by a unittest. Pull requests which add unittests
for uncovered code or rare edge cases are also appreciated.

Continuous Integration

The project uses Github Actions for continuous integration tests. Hooks provided by Github are active, so that each
push and pull request is automatically run against our Github Actions Workflows, checking code against different
databases, Python and Django versions. This includes automatic tracking of test coverage through Coveralls.

Contributing Documentation

Documentation is a crucial part of any open source project. We try to make it as useful as possible for both, new and
experienced developers. If you feel that something is unclear or lacking, your help to improve it is highly appreciated.

Even if you don’t feel comfortable enough to document modeltranslation’s usage or internals, you still have a chance
to contribute. None of the core committers is a native english speaker and bad grammar or misspellings happen. If
you find any of these kind or just simple typos, nobody will feel offended for getting an English lesson.

The documentation is written using reStructuredText and Sphinx. You should try to keep a maximum line length of
80 characters. Unlike for code contribution this isn’t a forced rule and easily exceeded by something like a long url.

Using the Issue Tracker

When you have found a bug or want to request a new feature for modeltranslation, please create a ticket using the
project’s issue tracker. Your report should include as many details as possible, like a traceback in case you get one.

Please do not use the issue tracker for general questions, we run a dedicated mailing list for this.

1.2.11 Related Projects

Note: This list is horribly outdated and only covers apps that where available when modeltranslation was initially
developed. A more complete list can be found at djangopackages.com.

django-multilingual

A library providing support for multilingual content in Django models.

It is not possible to reuse existing models without modifying them.

1.2. Table of Contents 31

https://travis-ci.org/deschler/django-modeltranslation
https://github.com/deschler/django-modeltranslation/blob/master/.github/workflows
https://coveralls.io/r/deschler/django-modeltranslation
https://coveralls.io/r/deschler/django-modeltranslation
http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
https://github.com/deschler/django-modeltranslation/issues
http://groups.google.com/group/django-modeltranslation
http://www.djangopackages.com/grids/g/model-translation/

django-modeltranslation Documentation, Release dev

django-multilingual-model

A much simpler version of the above django-multilingual.

It works very similar to the django-multilingual approach.

transdb

Django’s field that stores labels in more than one language in database.

This approach uses a specialized Field class, which means one has to change existing models.

i18ndynamic

This approach is not developed any more.

django-pluggable-model-i18n

This app utilizes a new approach to multilingual models based on the same concept the new admin in-
terface uses. A translation for an existing model can be added by registering a translation class for that
model.

This is more or less what modeltranslation does, unfortunately it is far from being finished.

1.2.12 ChangeLog

Changelog

All notable changes to this project will be documented in this file. See [standard-
→˓version](https://github.com/conventional-changelog/standard-version) for commit
→˓guidelines.

[0.18.13-beta.0](https://github.com/deschler/django-modeltranslation/compare/v0.
→˓18.13-beta1.0...v0.18.13-beta.0) (2023-09-13)

[0.18.13-beta1.0](https://github.com/deschler/django-modeltranslation/compare/v0.
→˓18.12...v0.18.13-beta1.0) (2023-09-13)

Bug Fixes

* Apply force_str only to Promise ([e7640c7](https://github.com/deschler/django-
→˓modeltranslation/commit/e7640c71197f3c7b34386847c746663123fad07b)), closes [
→˓#701](https://github.com/deschler/django-modeltranslation/issues/701)

[0.18.12](https://github.com/deschler/django-modeltranslation/compare/v0.18.11...
→˓v0.18.12) (2023-09-08)

Features

* Support language-specific field defaults ([2657de7](https://github.com/deschler/
→˓django-modeltranslation/commit/2657de7c2ebd6523a31ab04ba9453c715b0c34f3)), closes [
→˓#700](https://github.com/deschler/django-modeltranslation/issues/700) [#698](https:/
→˓/github.com/deschler/django-modeltranslation/issues/698) (continues on next page)

32 Chapter 1. Modeltranslation

django-modeltranslation Documentation, Release dev

(continued from previous page)

[0.18.11](https://github.com/deschler/django-modeltranslation/compare/v0.18.10...
→˓v0.18.11) (2023-07-16)

Features

* extend update_fields with translation fields in Model.save() ([#687](https://github.
→˓com/deschler/django-modeltranslation/issues/687)) ([d86c6de](https://github.com/
→˓deschler/django-modeltranslation/commit/d86c6defc864b3493955a41f95a85fc5aa8d5649))

[0.18.10](https://github.com/deschler/django-modeltranslation/compare/v0.18.10-
→˓beta.0...v0.18.10) (2023-06-02)

Bug Fixes

* Add support for JSONField ([25f7305](https://github.com/deschler/django-
→˓modeltranslation/commit/25f73058f5f176a61c5368b7aee563874309687e)), closes [
→˓#685](https://github.com/deschler/django-modeltranslation/issues/685)

[0.18.10-beta.1](https://github.com/deschler/django-modeltranslation/compare/v0.
→˓18.10-beta.0...v0.18.10-beta.1) (2023-06-02)

Bug Fixes

* Add support for JSONField ([25f7305](https://github.com/deschler/django-
→˓modeltranslation/commit/25f73058f5f176a61c5368b7aee563874309687e)), closes [
→˓#685](https://github.com/deschler/django-modeltranslation/issues/685)

[0.18.10-beta.1](https://github.com/deschler/django-modeltranslation/compare/v0.
→˓18.10-beta.0...v0.18.10-beta.1) (2023-06-02)

[0.18.10-beta.0](https://github.com/deschler/django-modeltranslation/compare/v0.
→˓18.9...v0.18.10-beta.0) (2023-05-30)

Bug Fixes

* Fix update_or_create for Django 4.2 ([d5eefa8](https://github.com/deschler/django-
→˓modeltranslation/commit/d5eefa8bd193cd8aee1cd1f97561d2a7e9dc0801)), closes [
→˓#682](https://github.com/deschler/django-modeltranslation/issues/682) [#683](https:/
→˓/github.com/deschler/django-modeltranslation/issues/683)

[0.18.9](https://github.com/deschler/django-modeltranslation/compare/v0.18.8...v0.
→˓18.9) (2023-02-09)

Bug Fixes

* Fix handling of expressions in `values()`/`values_list()` ([d65ff60](https://github.
→˓com/deschler/django-modeltranslation/commit/
→˓d65ff60007d4088b1f483edd2df85f407be3b5de)), closes [#670](https://github.com/
→˓deschler/django-modeltranslation/issues/670)

[0.18.8](https://github.com/deschler/django-modeltranslation/compare/v0.18.8-beta.
→˓1...v0.18.8) (2023-02-01) (continues on next page)

1.2. Table of Contents 33

django-modeltranslation Documentation, Release dev

(continued from previous page)

[0.18.8-beta.1](https://github.com/deschler/django-modeltranslation/compare/v0.18.
→˓8-beta.0...v0.18.8-beta.1) (2023-01-27)

Features

* Add support for ManyToManyFields ([#668](https://github.com/deschler/django-
→˓modeltranslation/issues/668)) ([f69e317](https://github.com/deschler/django-
→˓modeltranslation/commit/f69e3172bc6254a4ddd8def7500632d0046b30eb))

Bug Fixes

* **docs:** Update documentation regarding inheritance ([#665](https://github.com/
→˓deschler/django-modeltranslation/issues/665)) ([ca31a21](https://github.com/
→˓deschler/django-modeltranslation/commit/ca31a21f014b04978188562a0e0e1b58d95923e6)),
→˓closes [#663](https://github.com/deschler/django-modeltranslation/issues/663)

[0.18.8-beta.0](https://github.com/deschler/django-modeltranslation/compare/v0.18.
→˓7...v0.18.8-beta.0) (2022-11-22)

Bug Fixes

* Fix admin widget for fk fields ([#662](https://github.com/deschler/django-
→˓modeltranslation/issues/662)) ([fcfbd5c](https://github.com/deschler/django-
→˓modeltranslation/commit/fcfbd5ce059e4858a2c8d4803d094285282ad2c9)), closes [
→˓#660](https://github.com/deschler/django-modeltranslation/issues/660)

[0.18.7](https://github.com/deschler/django-modeltranslation/compare/v0.18.6...v0.
→˓18.7) (2022-11-08)

[0.18.6](https://github.com/deschler/django-modeltranslation/compare/v0.18.5...v0.
→˓18.6) (2022-11-07)

Bug Fixes

* Fix unexpected ordering after `values()`/`values_list()` followed by `order_by()`.
→˓([09ce0e0](https://github.com/deschler/django-modeltranslation/commit/
→˓09ce0e076ba323432275e28eb16fdb19f37df3e0)), closes [#655](https://github.com/
→˓deschler/django-modeltranslation/issues/655) [#656](https://github.com/deschler/
→˓django-modeltranslation/issues/656)

[0.18.5](https://github.com/deschler/django-modeltranslation/compare/v0.18.4...v0.
→˓18.5) (2022-10-12)

Features

* Support UserAdmin add_fieldsets ([d414cd3](https://github.com/deschler/django-
→˓modeltranslation/commit/d414cd3e0709622a66260088d2da0ade94a01be1)), closes [
→˓#654](https://github.com/deschler/django-modeltranslation/issues/654)

Bug Fixes
(continues on next page)

34 Chapter 1. Modeltranslation

django-modeltranslation Documentation, Release dev

(continued from previous page)

* Fix working in strict mode. ([#649](https://github.com/deschler/django-
→˓modeltranslation/issues/649)) ([8ef8afd](https://github.com/deschler/django-
→˓modeltranslation/commit/8ef8afd2d7aad71ba185f17c0db95494616f3730))

[0.18.4](https://github.com/deschler/django-modeltranslation/compare/v0.18.3...v0.
→˓18.4) (2022-07-22)

Bug Fixes

* Update django compatibility ([582b612](https://github.com/deschler/django-
→˓modeltranslation/commit/582b612ab5d422bf2cd1f45a28748db60819e85c))

[0.18.3](https://github.com/deschler/django-modeltranslation/compare/v0.18.3-beta.
→˓1...v0.18.3) (2022-07-19)

Bug Fixes

* Remove six (old compat layer for python2) ([86b67c2](https://github.com/deschler/
→˓django-modeltranslation/commit/86b67c271e5fcba94e396acc9efd5e52ced2d1e2))

[0.18.3-beta.1](https://github.com/deschler/django-modeltranslation/compare/v0.18.
→˓3-beta.0...v0.18.3-beta.1) (2022-07-13)

Features

* **dev:** Migrate to pytest ([d3e2396](https://github.com/deschler/django-
→˓modeltranslation/commit/d3e2396be6757f0d0b3ee4e06777c37f17d3834b))

[0.18.3-beta.0](https://github.com/deschler/django-modeltranslation/compare/v0.18.
→˓2...v0.18.3-beta.0) (2022-07-10)

Features

* Support `named` argument for `values_list` ([#644](https://github.com/deschler/
→˓django-modeltranslation/issues/644)) ([39bbe82](https://github.com/deschler/django-
→˓modeltranslation/commit/39bbe821b31278b21e0bf3528d036343338bb0f7))

[0.18.2](https://github.com/deschler/django-modeltranslation/compare/v0.18.1...v0.
→˓18.2) (2022-05-15)

Features

* Update test matrix; Drop python 3.6, add Python 3.10 ([#638](https://github.com/
→˓deschler/django-modeltranslation/issues/638)) ([29deb95](https://github.com/
→˓deschler/django-modeltranslation/commit/29deb95bf30c0e31c6a031f754677182cdd461a2))

[0.18.1](https://github.com/deschler/django-modeltranslation/compare/v0.18.0...v0.
→˓18.1) (2022-05-15)

Bug Fixes
(continues on next page)

1.2. Table of Contents 35

django-modeltranslation Documentation, Release dev

(continued from previous page)

* Fix install (included missing VERSION) ([ab66e8d](https://github.com/deschler/
→˓django-modeltranslation/commit/ab66e8d2f79c5e7e6f517e53a1698f5113d711bf)), closes [
→˓#637](https://github.com/deschler/django-modeltranslation/issues/637)

[0.18.0](https://github.com/deschler/django-modeltranslation/compare/v0.17.7...v0.
→˓18.0) (2022-05-14)

BREAKING CHANGES

* Replaced `VERSION` in tuple format by `__version__` as a string

Bug Fixes

* Add django version check for default_app_config ([79d2e08](https://github.com/
→˓deschler/django-modeltranslation/commit/79d2e089eff2f6bcfd150d3ac6e165bfefa475cb))

* Fix django version detect during install ([876f2e7](https://github.com/deschler/
→˓django-modeltranslation/commit/876f2e715804e5cba9f8dde0b8a75ff3179e908c))

* Store version as plain text file to simplify bumping ([#636](https://github.com/
→˓deschler/django-modeltranslation/issues/636)) ([6b4bb73](https://github.com/
→˓deschler/django-modeltranslation/commit/6b4bb733d971363c223d9d4ff307a0f9be131315))

[0.17.7](https://github.com/deschler/django-modeltranslation/compare/v0.17.6...v0.
→˓17.7) (2022-05-04)

Bug Fixes

* Do not include annotation fields when selecting specific fields ([#634](https://
→˓github.com/deschler/django-modeltranslation/issues/634)) ([defc37c](https://github.
→˓com/deschler/django-modeltranslation/commit/
→˓defc37c7a539dff1e4af96e7d13856519befe585))

[0.17.6](https://github.com/deschler/django-modeltranslation/compare/v0.17.5...v0.
→˓17.6) (2022-04-29)

Bug Fixes

* Preserve annotate() fields in queryset ([#633](https://github.com/deschler/django-
→˓modeltranslation/issues/633)) ([6f2688f](https://github.com/deschler/django-
→˓modeltranslation/commit/6f2688f52c56107da361c7c6197bcf38d8b99f42))

[0.17.5](https://github.com/deschler/django-modeltranslation/compare/v0.17.4...v0.
→˓17.5) (2022-01-30)

[0.17.4](https://github.com/deschler/django-modeltranslation/compare/v0.17.3...v0.
→˓17.4) (2022-01-28)

Features

* semi-configurable selection of elements to generate tabs in admin ([#607](https://
→˓github.com/deschler/django-modeltranslation/issues/607)) ([eb05201](https://github.
→˓com/deschler/django-modeltranslation/commit/
→˓eb052018bf930146d667be3e47f26d69afb3c2c3))

(continues on next page)

36 Chapter 1. Modeltranslation

django-modeltranslation Documentation, Release dev

(continued from previous page)

[0.17.3](https://github.com/deschler/django-modeltranslation/compare/v0.17.2...v0.
→˓17.3) (2021-06-28)

[0.17.2](https://github.com/deschler/django-modeltranslation/compare/v0.17.1...v0.
→˓17.2) (2021-05-31)

Bug Fixes

* **docs:** Fixed legacy python 2 print statements ([10ec4ed](https://github.com/
→˓deschler/django-modeltranslation/commit/10ec4ed8694d949815ccf4ada679a1cb72f24675))

* **MultilingualQuerySet:** Make _clone signature match default django _clone
→˓([c65adb0](https://github.com/deschler/django-modeltranslation/commit/
→˓c65adb058d6c60c077138e5099342f31aac1690b)), closes [#483](https://github.com/
→˓deschler/django-modeltranslation/issues/483)

[0.17.1](https://github.com/deschler/django-modeltranslation/compare/v0.16.2...v0.
→˓17.1) (2021-04-15)

Bug Fixes

* Fixed .latest() ORM method with django 3.2 ([eaf613b](https://github.com/deschler/
→˓django-modeltranslation/commit/eaf613be1733314ad3b639e1702b0f7423af7899)), closes [
→˓#591](https://github.com/deschler/django-modeltranslation/issues/591)

[0.17.0](https://github.com/deschler/django-modeltranslation/compare/v0.16.2...v0.
→˓17.0) (2021-04-15)

Features

* Add Django 3.2 support

[0.16.2](https://github.com/deschler/django-modeltranslation/compare/v0.16.1...v0.
→˓16.2) (2021-02-18)

Bug Fixes

* Fix loading for Inline Admin ([c8ea228](https://github.com/deschler/django-
→˓modeltranslation/commit/c8ea22877b3f4070ffb4d3d4e602d7ef09ab0860))

[0.16.1](https://github.com/deschler/django-modeltranslation/compare/v0.16.0...v0.
→˓16.1) (2020-11-23)

Bug Fixes

* missing jquery operator ([7c750de](https://github.com/deschler/django-
→˓modeltranslation/commit/7c750def728e163d5bde88fedd1124bd7e9a8122))

[0.16.0](https://github.com/deschler/django-modeltranslation/compare/v0.15.2...v0.
→˓16.0) (2020-10-12)

BREAKING CHANGES
(continues on next page)

1.2. Table of Contents 37

django-modeltranslation Documentation, Release dev

(continued from previous page)

* **js:** It's 2020 already, drop backward compatibility with jquery-ui 1.10.

Features

* **tabbed-translation-fields:** Make tab with errors visible by default.
→˓([4c2e284](https://github.com/deschler/django-modeltranslation/commit/
→˓4c2e284d871044a443817aabfbe3c956799ffe06))

Bug Fixes

* Fix error detection; add red dot for tab with errors. ([9a93cf6](https://github.com/
→˓deschler/django-modeltranslation/commit/9a93cf6b4d4ec24e754159f71cf9d9eda811673e))

* **dev:** Fix install in editable mode. ([aaa2dcf](https://github.com/deschler/
→˓django-modeltranslation/commit/aaa2dcf5987e19c2da8460bc73a0681a291f0dc5))

* **js:** It's 2020 already, drop backward compatibility with jquery-ui 1.10.
→˓([d8f432a](https://github.com/deschler/django-modeltranslation/commit/
→˓d8f432a5cadd60871101081c87569e3d390474e6))

[0.15.2](https://github.com/deschler/django-modeltranslation/compare/v0.15.1...v0.
→˓15.2) (2020-09-08)

Features

* Adds a language option to the update_translation_fields commands ([ac91740](https://
→˓github.com/deschler/django-modeltranslation/commit/
→˓ac91740a5c3d718b8695514da8a0dd7b90aa1ee6)), closes [#563](https://github.com/
→˓deschler/django-modeltranslation/issues/563)

[0.15.1](https://github.com/deschler/django-modeltranslation/compare/v0.15.0...v0.
→˓15.1) (2020-07-10)

Bug Fixes

* **admin:** Fix custom widget initialization problem ([48e7f59](https://github.com/
→˓deschler/django-modeltranslation/commit/48e7f598955a09dc4130a0074cb953ecd05d1a01))

[0.15.0](https://github.com/deschler/django-modeltranslation/compare/0.14.4...0.15.
→˓0) (2020-04-22)

Features

* Use poetry as venv manager ([a5b402c](https://github.com/deschler/django-
→˓modeltranslation/commit/a5b402c51673a78a1aa160247746695070e08a2f))

* Drop old python versions (<3.6)

* Drop old django versions (<2.2)

Bug Fixes

* add NewMultilingualManager __eq__() ([205a8f6](https://github.com/deschler/django-
→˓modeltranslation/commit/205a8f6c2f411b8b20235bbf89b88d3781919cbd))

(continues on next page)

38 Chapter 1. Modeltranslation

django-modeltranslation Documentation, Release dev

(continued from previous page)

0.14.0 (2019-11-14)

Bug Fixes

* Django 3.0 support (#521)

* Tests when django files not writable (#527)

0.13-3 (2019-07-22)

Bug Fixes

* Broken "Add another inline" (#475)

0.13-2 (2019-07-01)

Bug Fixes

* Outdated formfield_for_dbfield signature (#510)

0.13-1 (2019-04-18)

* REMOVED: Python 3.5 from test matrix

* REMOVED: Django 2.0 from test matrix

* FIXED: TabbedTranslationAdmin in django 2.2 (#506)

* ADDED: Django 2.2 to test matrix

0.13-0 (2019-02-21)

* ADDED: Django 2.0 and 2.1 support

* ADDED: Python 3.7 support

* REMOVED: Python 3.4 from test matrix

0.13-beta3 (2019-02-17)

* FIXED: Patching parent model managers on multi-table inheritance (#467)

0.13-beta2 (2019-02-13)

* ADDED: Django 2.1 support

* ADDED: Python 3.7 support

* FIXED: JS errors in admin with new jQuery

0.13-beta1 (2018-04-16)

(continues on next page)

1.2. Table of Contents 39

django-modeltranslation Documentation, Release dev

(continued from previous page)

* FIXED: Reverse relations and select_related for Django 2.0.
(resolves issues #436 and #457, thanks to GreyZmeem and dmarcelino)

* FIXED: Multiple fixes for Django 2.0.
(resolves issues #436 and #451, thanks PetrDlouhy)

* ADDED: Add primary support to DISTINCT statement
(resolves issue #368, thanks Virgílio N Santos)

* CHANGED: Check if 'descendants' list has values
(resolves issue #445, thanks Emilie Zawadzki)

0.12.2 (2018-01-26)

* FIXED: order_by with expression
(resolves issue #398, thanks Benjamin Toueg)

0.12.1 (2017-04-05)

* FIXED: Issue in loaddata management command in combination with Django 1.11.
(resolves issue #401)

0.12 (2016-09-20)

* ADDED: Support for Django 1.10.
(resolves issue #360, thanks Jacek Tomaszewski and Primož Kerin)

* CHANGED: Original field value became more unreliable and undetermined;
please make sure you're not using it anywhere. See
http://django-modeltranslation.readthedocs.io/en/latest/usage.html#the-state-

→˓of-the-original-field

* CHANGED: Let register decorator return decorated class
(resolves issue #360, thanks spacediver)

* FIXED: Deferred classes signal connection.
(resolves issue #379, thanks Jacek Tomaszewski)

* FIXED: values_list + annotate combo bug.
(resolves issue #374, thanks Jacek Tomaszewski)

* FIXED: Several flake8 and travis related issues.
(resolves issues #363, thanks Matthias K)

0.11 (2016-01-31)

Released without changes.

0.11rc2 (2015-12-15)

* FIXED: Custom manager in migrations.
(resolves issues #330, #339 and #350, thanks Jacek Tomaszewski)

(continues on next page)

40 Chapter 1. Modeltranslation

django-modeltranslation Documentation, Release dev

(continued from previous page)

0.11rc1 (2015-12-07)

* ADDED: Support for Django 1.9
(resolves issue #349, thanks Jacek Tomaszewski)

0.10.2 (2015-10-27)

* FIXED: Proxy model inheritance for Django >=1.8
(resolves issues #304, thanks Stratos Moros)

0.10.1 (2015-09-04)

* FIXED: FallbackValuesListQuerySet.iterator which broke ORM datetimes
(resolves issue #324, thanks Venelin Stoykov)

0.10.0 (2015-07-03)

* ADDED: CSS support for bi-directional languages to TranslationAdmin
using mt-bidi class.
(resolves issue #317, thanks oliphunt)

* ADDED: A decorator to handle registration of models.
(resolves issue #318, thanks zenoamaro)

* FIXED: Handled annotation fields when using values_list.
(resolves issue #321, thanks Lukas Lundgren)

0.9.1 (2015-05-14)

* FIXED: Handled deprecation of _meta._fill_fields_cache() for Django 1.8
in add_translation_fields.
(resolves issue #304, thanks Mathias Ettinger and Daniel Loeb)

* FIXED: Handled deprecation of transaction.commit_unless_managed for
Django 1.8 in sync_translation_fields management command.
(resolves issue #310)

* FIXED: Fixed translatable fields discovery with the new _meta API and
generic relations for Django 1.8.
(resolves issue #309, thanks Morgan Aubert)

0.9 (2015-04-16)

* ADDED: Support for Django 1.8 and the new meta API.
(resolves issue #299, thanks Luca Corti and Jacek Tomaszewski)

0.8.1 (2015-04-02)
(continues on next page)

1.2. Table of Contents 41

django-modeltranslation Documentation, Release dev

(continued from previous page)

* FIXED: Using a queryset with select related.
(resolves issue #298, thanks Vladimir Sinitsin)

* FIXED: Added missing jquery browser plugin.
(resolves issue #270, thanks Fabio Caccamo)

* FIXED: Deprecated imports with Django >= 1.7
(resolves issue #283, thanks Alex Marandon)

0.8 (2014-10-06)

* FIXED: JavaScript scoping issue with two jQuery versions in tabbed
translation fields.
(resolves issue #267,
thanks Wojtek Ruszczewski)

* ADDED: Patch db_column of translation fields in migration files.
(resolves issue #264,
thanks Thom Wiggers and Jacek Tomaszewski)

* ADDED: Fallback to values and values_list.
(resolves issue #258,
thanks Jacek Tomaszewski)

0.8b2 (2014-07-18)

* ADDED: Explicit support for Python 3.4 (should have already worked for
older versions that supported Python 3).
(resolves issue #254)

* ADDED: Support for Django 1.7 migrations.

* FIXED: Dict iteration Exception under Python 3.
(resolves issue #256,
thanks Jacek Tomaszewski)

* FIXED: Reduce usage under Python 3.
(thanks Jacek Tomaszewski)

* FIXED: Support for AppConfigs in INSTALLED_APPS
(resolves issue #252,
thanks Warnar Boekkooi, Jacek Tomaszewski)

* FIXED: Rewrite field names in select_related. Fix deffered models registry.
Rewrite spanned queries on all levels for defer/only.
(resolves issue #248,
thanks Jacek Tomaszewski)

0.8b1 (2014-06-22)

* ADDED: Detect custom get_queryset on managers.
(resolves issue #242,
thanks Jacek Tomaszewski)

* ADDED: Support for Django 1.7 and the new app-loading refactor.
(resolves issue #237)

* ADDED: Added required_languages TranslationOptions
(continues on next page)

42 Chapter 1. Modeltranslation

django-modeltranslation Documentation, Release dev

(continued from previous page)

(resolves issue #143)

* FIXED: Fixed sync_translation_fields to be compatible with PostgreSQL.
(resolves issue #247,
thanks Jacek Tomaszewski)

* FIXED: Manager .values() with no fields specified behaves as expected.
(resolves issue #247)

* FIXED: Fieldset headers are not capitalized when group_fieldsets is enabled.
(resolves issue #234,
thanks Jacek Tomaszewski)

* FIXED: Exclude for nullable field manager rewriting.
(resolves issue #231,
thanks Jacek Tomaszewski)

* FIXED: Use AVAILABLE_LANGUAGES in sync_translation_fields management
command to detect missing fields.
(resolves issue #227,
thanks Mathieu Leplatre)

* FIXED: Take db_column into account while syncing fields
(resolves issue #225,
thanks Mathieu Leplatre)

* CHANGED: Moved to get_queryset, which resolves a deprecation warning.
(resolves issue #244,
thanks Thom Wiggers)

* CHANGED: Considered iframes in tabbed_translation_fields.js to support
third party apps like django-summernote.
(resolves issue #229,
thanks Francesc Arpí Roca)

* CHANGED: Removed the http protocol from jquery-ui url in admin Media class.
(resolves issue #224,
thanks Francesc Arpí Roca)

0.7.3 (2014-01-05)

* ADDED: Documentation for TranslationOptions fields reference and
south/sync_translation_fields.

* FIXED: Some python3 compatibility issues.
(thanks Jacek Tomaszewski,
resolves issue #220)

* FIXED: Clearing translated FileFields does not work with easy_thumbnails.
(thanks Jacek Tomaszewski,
resolves issue #219)

* FIXED: Compatibility with nested inlines.
(thanks abstraktor,
resolves issue #218)

* FIXED: Admin inlines recursion problem in Django 1.6.
(thanks Oleg Prans,
resolves issue #214)

* FIXED: Empty FileField handling.
(thanks Jacek Tomaszewski,
resolves issue #215)

0.7.2 (2013-11-11)
(continues on next page)

1.2. Table of Contents 43

django-modeltranslation Documentation, Release dev

(continued from previous page)

* ADDED: Documentation about empty_values.
(thanks Jacek Tomaszewski,
resolves issue #211)

* FIXED: Proxy model handling.
(thanks Jacek Tomaszewsk)

* FIXED: Abstract managers patching.
(thanks Jacek Tomaszewski,
resolves issue #212)

0.7.1 (2013-11-07)

Packaged from revision f7c7ea174344f3dc0cf56ac3bf6e92878ed6baea

* ADDED: Configurable formfields. The ultimate approach to nullable CharFields.
(thanks Jacek Tomaszewski,
resolves issue #211, ref #163, #187)

* FIXED: Recursion problem with fieldset handling in Django 1.6.
(thanks to Bas Peschier,
resolves issue #214)

0.7 (2013-10-19)

Packaged from revision 89f5e6712aaf5d5ec7e2d61940dc1a71fb08ca94

* ADDED: A setting to control which language are slug fields based on
(thanks to Konrad Wojas,
resolves issue #194)

* ADDED: A noinput option to the sync_translation_fields management command.
(thanks to cuchac,
resolves issues #179 and #184)

* ADDED: Support for Python 3.2 and 3.3.
(thanks to Karol Fuksiewicz,
resolves issue #174)

* ADDED: Convenient admin classes which already contain proper Media
definitions.
(resolves issue #171)

* ADDED: Only, defer, values, values_list, dates, raw_values methods to
MultilingualManager.
(resolves issue #166 adn #173)

* ADDED: Support for ForeignKey and OneToOneField.
(thanks to Braden MacDonald and Jacek Tomaszewski,
resolves issue #161)

* ADDED: An auto-population option to the loaddata command.
(resolves issue #160)

* ADDED: A MODELTRANSLATION_LOADDATA_RETAIN_LOCALE setting for loaddata
command to leave locale alone.
(resolves issue #151)

* FIXED: Compatibility with Django 1.6 development version.
(resolves issue #169)

* FIXED: Handling of 3rd party apps' ModelForms.
(continues on next page)

44 Chapter 1. Modeltranslation

django-modeltranslation Documentation, Release dev

(continued from previous page)

(resolves issue #167)

* FIXED: Triggering field fallback on its default value rather than empty
string only. Also enhance nullable fields in forms with proper
widgets to preserve ``None``.
(thanks to Wojtek Ruszczewski,
resolves issue #163)

* FIXED: Admin prepopulated_fields is now handled properly.
(thanks to Rafleze,
resolves issue #181 and #190)

* FIXED: Form saving when translated field is excluded (e.g. in admin)
(resolves issue #183)

* FIXED: Multilingual clones are Multilingual too.
(resolved issue #189)

* CHANGED: Every model's manager is patched as MultiLingual, not only objects.
(resolved issue #198)

* CHANGED: Display "make null" checkboxes in model forms.

* CHANGED: MODELTRANSLATION_DEBUG setting defaults to False instead of
settings.DEBUG.

* CHANGED: Drop support for Python 2.5 and Django 1.3.

0.6.1 (2013-03-17)

Packaged from revision fc8a3034897b8b818c74f41c43a92001e536d970

* FIXED: Joined query does not use translated fields.
(resolves issue #162)

0.6 (2013-03-01)

Packaged from revision ea0e2db68900371146d39dcdf88b29091ee5222f

* ADDED: A new ENABLE_FALLBACKS setting and a context manager for switching
fallbacks temporarily.
(thanks to Wojtek Ruszczewski,
resolves issue #152)

* ADDED: Major refactoring of the tabbed translation fields javascript. Adds
support for tabular inlines and includes proper handling of stacked
inlines, which have never been officially supported, but were not
actively prevented from being tabbified.
(resolves issue #66)

* ADDED: New group_fieldsets option for TranslationAdmin. When activated
translation fields and untranslated fields are automatically
grouped into fieldsets.
(based on original implementation by Chris Adams,
resolves issues #38)

* FIXED: Tests to run properly in the scope of a Django project.
(thanks to Wojtek Ruszczewski,
resolves issue #153)

* FIXED: Broken tab activation when using jquery-ui 1.10, keeping support for
older jquery-ui versions and the jquery version shipped by Django.
(thanks to Dominique Lederer,
resolves issue #146)

* FIXED: Wrong admin field css class for en-us language.
(continues on next page)

1.2. Table of Contents 45

django-modeltranslation Documentation, Release dev

(continued from previous page)

(resolves issue #141)

* FIXED: Added missing hook for admin readonly_fields.
(resolves issue #140)

* FIXED: Keys used in tabbed translation fields to group translations are not
unique for inlines.
(resolves issue #121)

* FIXED: The prepopulated_fields TranslationAdmin option only works on the
first defined field to prepopulate from and made the option aware
of the current language.
(resolves issue #57)

* CHANGED: Removed deprecated MODELTRANSLATION_TRANSLATION_REGISTRY setting.

* CHANGED: Refactored auto population manager functionality. Switched to a
populate method in favour of the old _populate keyword and added a new
contextmanager to switch the population mode on demand.
(thanks to Wojtek Ruszczewski,
resolves issue #145)

* CHANGED: Major refactoring of translation field inheritance and
TranslationOptions.
(thanks to Wojtek Ruszczewski,
resolves issues #50 and #136)

0.5 (2013-02-10)

Packaged from revision bedd18ea9e338b133d06f2ed5e7ebfc2e21fd276

* ADDED: Merged autodiscover tests from django-modeltranslation-wrapper.

* ADDED: Rewrite method to MultilingualManager and optimized create.

* FIXED: grouped_translations are computed twice in tabbed translations.
(thanks to Wojtek Ruszczewski,
resolves issue #135)

* FIXED: CSS classes in tabbed translation fields when fieldname has a leading
underscore.
(thanks to Wojtek Ruszczewski,
resolves issue #134)

* FIXED: Rewriting of descending ('-' prefixed) ordering fields in
MultilingualManager.
(thanks to Wojtek Ruszczewski,
resolves issue #133)

* FIXED: Download url in setup.py.
(thanks to Benoît Bryon,
resolves issue #130)

* FIXED: The update_translation_fields management command does nothing.
(resolves issue #123)

* FIXED: MultilingualQuerySet custom inheritance.

* CHANGED: Don't raise an exception if TranslationField is accessed via class
to allow descriptor introspection.
(resolves issue #131)

0.5b1 (2013-01-07)

Packaged from revision da928dd431fcf112e2e9c4c154c5b69e7dadc3b3.

(continues on next page)

46 Chapter 1. Modeltranslation

django-modeltranslation Documentation, Release dev

(continued from previous page)

* ADDED: Possibility to turn off query rewriting in MultilingualManager.
(thanks to Jacek Tomaszewski)

* FIXED: Fixed update_translation_fields management command.
(thanks to Jacek Tomaszewski,
resolves issues #123 and #124)

* CHANGED: Major test refactoring.
(thanks to Jacek Tomaszewski,
resolves issues #100 and #119)

0.5a1 (2012-12-05)

Packaged from revision da4aeba0ea20ddbee67aa49bc90af507997ac386.

* ADDED: Increased the number of supported fields. Essentially all Django
model fields and subclasses of them should work, except related
fields (ForeignKey, ManyToManyField, OneToOneField) and AutoField
which are not supported.

* ADDED: A subclass of TranslationOptions inherits fields from its bases.
(thanks to Bruno Tavares and Jacek Tomaszewski,
resolves issue #110)

* ADDED: Support for fallback languages. Allows fine grained configuration
through project settings and TranslationOptions on model basis.
(thanks to Jacek Tomaszewski,
resolves issue #104)

* ADDED: Multilingual manager which is aware of the current language.
(thanks to Jacek Tomaszewski,
resolves issues #45, #78 and #84)

* CHANGED: Version code to use a PEP386 compliant version number.

* CHANGED: Constructor rewrites fields to be language aware.
(thanks to Jacek Tomaszewski,
resolves issues #33 and #58)

* FIXED: Lacking support for readonly_fields in TranslationAdmin.
(thanks to sbrandtb,
resolves issue #111)

* FIXED: Model's db_column option is not applied to the translation field.
(resolves issue #83)

* FIXED: Admin prevents saving a cleared field. The fix deactivates rule3 and
implies the new language aware manager and constructor rewrite.
(resolves issue #85)

0.4.1 (2012-11-13)

Packaged from revision d9bf9709e9647fb2af51fc559bbe356010bd51ca.

* FIXED: Pypi wants to install beta version. Happened because pypi treats
0.4.0-beta2 as latest release. This also effectively resulted in a
downgrade when using 'pip --upgrade' and 0.4.0 was already installed.
(thanks to jmagnusson for the report,
resolves issue #103)

0.4.0 (2012-11-11)
(continues on next page)

1.2. Table of Contents 47

django-modeltranslation Documentation, Release dev

(continued from previous page)

Packaged from revision c44f9cfee59f1b440f022422f917f247e16bbc6b.

* CHANGED: Refactored tests to allow test runs with other apps. Includes a
"backport" of override_settings to ensure Django 1.3 support.
(thanks to Jacek Tomaszewski)

* CHANGED: Modeltranslation related css class prefix to 'mt'.

* FIXED: Race condition during initialization.
(resolves issue #91)

* FIXED: Tabs don't properly support two-part language codes.
(resolves issue #63)

0.4.0-beta2 (2012-10-17)

Packaged from revision 7b8cafbde7b14afc8e85235e9b087889a6bfa86e.

* FIXED: Release doesn't include rst files.

0.4.0-beta1 (2012-10-17)

Packaged from revision 09a0c4434a676c6fd753e6dcde95056c424db62e.

* CHANGED: Refactored documentation using sphinx.
(resolves issue #81)

* FIXED: Setting MODELTRANSLATION_TRANSLATION_FILES should be optional.
(resolves issue #86)

0.4.0-alpha1 (2012-10-12)

Packaged from revision 170.

* ADDED: Support for FileField and ImageField.
(thanks to Bruno Tavares,
resolves issue #30)

* ADDED: New management command sync_database_fields to sync the database after
a new model has been registered or a new language has been added.
(thanks to Sébastien Fievet and the authors of django-transmeta,
resolves issue #62)

* CHANGED: Excluded tabular inlines from jQuery tabs, as they are currently
not supported.

* CHANGED: Use app-level translation files in favour of a single project-level
one. Adds an autoregister feature similiar to the one provided by
Django's admin. A new setting MODELTRANSLATION_TRANSLATION_FILES keeps
backwards compatibility with older versions. See documentation for
details. This is basically a merge from both
django-modeltranslation-wrapper and hyperweek's branch at github.
(thanks to Jacek Tomaszewski, Sébastien Fievet and Maxime Haineault,
resolves issues #19, #58 and #71)

* CHANGED: Moved tests to separate folder and added tests for TranslationAdmin.
To run the tests the settings provided in model.tests.modeltranslation
have to be used (settings.LANGUAGES override doesn't work for

(continues on next page)

48 Chapter 1. Modeltranslation

django-modeltranslation Documentation, Release dev

(continued from previous page)

TranslationAdmin).

* CHANGED: Major refactoring of the admin integration. Subclassed BaseModelAdmin
and InlineModelAdmin. Patching options in init doesn't seem to be
thread safe. Instead used provided hooks like get_form, get_formset
and get_fieldsets. This should resolve several problems with the
exclude and fieldsets options and properly support options in inlines.
(resolves issue #72)

* FIXED: Non-unicode verbose field names showing up empty in forms.
(resolves issue #35)

* FIXED: Dynamic TranslationOptions model name.

* FIXED: Widgets for translated fields are not properly copied from original
fields.
(thanks to boris-chervenkov, resolves issue #74)

* FIXED: Removed XMLField test which is deprecated since Django 1.3 and
broke tests in Django 1.4.
(resolves issue #75)

0.3.3 (2012-02-23)

Packaged from revision 129.

* CHANGED: jQuery search path in tabbed_translation_fields.js. This allows use of
a version of jQuery other than the one provided by Django. Users who
want to force the use of Django's jQuery can include force_jquery.js.

* FIXED: Another attempt to include static files during installation.
(resolves reopened issue #61)

0.3.2 (2011-06-16)

Packaged from revision 122.

* FIXED: Static files not included during installation.
(resolves issue #61)

0.3.1 (2011-06-07)

Packaged from revision 121.

* CHANGED: Renamed media folder to static.

0.3 (2011-06-03)

Packaged from revision 113.

* ADDED: Support for multi-table inheritance.
(thanks to Sébastien Fievet, resolves issues #50 and #51)

* ADDED: Jquery-ui based admin support for tabbed translation fields.
(thanks to jaap and adamsc, resolves issue #39)

* ADDED: CSS class to identify a translation field and the default translation
field in admin.
(thanks to jaap)

(continues on next page)

1.2. Table of Contents 49

django-modeltranslation Documentation, Release dev

(continued from previous page)

* ADDED: Configurable default value per field instance.
(thanks to bmihelac, resolves issue #28)

* ADDED: Setting to override the default language.
(thanks to jaap, resolves issue #2)

* CHANGED: Improved performance of update_translation_fields command.
(thanks to adamsc, resolves issue #43)

* CHANGED: Factored out settings into a separate settings.py and consistently
used an app specific settings prefix.

* CHANGED: Refactored creation of translation fields and added handling of
supported fields.
(resolves issue #37)

* FIXED: Clearing the default translation field in admin does not clear the
original field.
(resolves issue #47)

* FIXED: In some setups appears "This field is required" error for the
original field.
(resolves issue #5)

* FIXED: Translations are not saved for tinymce HTMLField when using jquery
tabs.
(thanks to kottenator, resolves issue #41)

* FIXED: Fieldname isn't ensured to be string.
(resolves issue #41)

* FIXED: Kept backwards compatibility with Django-1.0.
(thanks to jaap, resolves issue #34)

* FIXED: Regression in south_field_triple caused by r55.
(thanks to jaap, resolves issue #29)

* FIXED: TranslationField pre_save does not get the default language
correctly.
(thanks to jaap, resolves issue #31)

0.2 (2010-06-15)

Packaged from revision 57.

* ADDED: Support for admin prepopulated_fields.
(resolves issue #21)

* ADDED: Support for admin list_editable.
(thanks carl.j.meyer, resolves issue #20)

* ADDED: Preserve the formfield widget of the translated field.
(thanks piquadrat)

* ADDED: Initial support for django-south.
(thanks andrewgodwin, resolves issue #11)

* ADDED: Support for admin inlines, common and generic.
(resolves issue #12 and issue #18)

* FIXED: Admin form validation errors with empty translated values and
unique=True.
(thanks to adamsc, resolves issue #26)

* FIXED: Mangling of untranslated prepopulated fields.
(thanks to carl.j.meyer, resolves issue #25)

* FIXED: Verbose names of translated fields are not translated.
(thanks to carl.j.meyer, resolves issue #24)

* FIXED: Race condition between model import and translation registration in
production by ensuring that models are registered for translation

(continues on next page)

50 Chapter 1. Modeltranslation

django-modeltranslation Documentation, Release dev

(continued from previous page)

before TranslationAdmin runs.
(thanks to carl.j.meyer, resolves issue #19)

* FIXED: Added workaround for swallowed ImportErrors by printing a traceback
explicitly.
(resolves issue #17)

* FIXED: Only print debug statements to stdout if the runserver or
runserver_plus management commands are used.
(resolves issue #16)

* FIXED: Removed print statements so that modeltranslation is usable with
mod_wsgi.
(resolves issue #7)

* FIXED: Broken admin fields and fieldsets.
(thanks simoncelen, resolves issue #9)

* FIXED: Creation of db fields with invalid python language code.
(resolves issue #4)

* FIXED: Tests to run from any project.
(thanks carl.j.meyer, resolves issue #6)

* FIXED: Removed unused dependency to content type which can break syncdb.
(thanks carl.j.meyer, resolves issue #1)

0.1 (2009-02-22)

Initial release packaged from revision 19.

1.3 Authors

1.3.1 Core Committers

• Peter Eschler <peschler@gmail.com> (retired)

• Dirk Eschler <eschler@gmail.com>

• Jacek Tomaszewski <jacek.tomek@gmail.com>

1.3.2 Contributors

• Carl J. Meyer

• Jaap Roes

• Bojan Mihelac

• Sébastien Fievet

• Bruno Tavares

• Zach Mathew (of django-linguo, initial author of MultilingualManager)

• Mihai Sucan

• Benoît Bryon

• Wojtek Ruszczewski

• Chris Adams

1.3. Authors 51

mailto:peschler@gmail.com
mailto:eschler@gmail.com
mailto:jacek.tomek@gmail.com
https://github.com/zmathew/django-linguo

django-modeltranslation Documentation, Release dev

• Dominique Lederer

• Braden MacDonald

• Karol Fuksiewicz

• Konrad Wojas

• Bas Peschier

• Oleg Prans

• Francesc Arpí Roca

• Mathieu Leplatre

• Thom Wiggers

• Warnar Boekkooi

• Alex Marandon

• Fabio Caccamo

• Vladimir Sinitsin

• Luca Corti

• Morgan Aubert

• Mathias Ettinger

• Daniel Loeb

• Stephen McDonald

• Lukas Lundgren

• zenoamaro

• oliphunt

• Venelin Stoykov

• Stratos Moros

• Benjamin Toueg

• Emilie Zawadzki

• Virgílio N Santos

• PetrDlouhy

• dmarcelino

• GreyZmeem

• And many more . . . (if you miss your name here, please let us know!)

52 Chapter 1. Modeltranslation

Index

E
empty_values (TranslationOptions attribute), 14

F
fallback_languages (TranslationOptions at-

tribute), 13
fallback_undefined (TranslationOptions at-

tribute), 14
fallback_values (TranslationOptions attribute), 14
fields (TranslationOptions attribute), 13

R
required_languages (TranslationOptions at-

tribute), 14

53

	Modeltranslation
	Features
	Table of Contents
	Authors

	Index

